湖南省醴陵市2026屆高三數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測模擬試題含解析_第1頁
湖南省醴陵市2026屆高三數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測模擬試題含解析_第2頁
湖南省醴陵市2026屆高三數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測模擬試題含解析_第3頁
湖南省醴陵市2026屆高三數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測模擬試題含解析_第4頁
湖南省醴陵市2026屆高三數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

湖南省醴陵市2026屆高三數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.雙曲線的漸近線方程為()A. B.C. D.2.設(shè)a=log73,,c=30.7,則a,b,c的大小關(guān)系是()A. B. C. D.3.已知直線是曲線的切線,則()A.或1 B.或2 C.或 D.或14.如圖所示,矩形的對角線相交于點,為的中點,若,則等于().A. B. C. D.5.已知函數(shù),要得到函數(shù)的圖象,只需將的圖象()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度6.在平行四邊形中,若則()A. B. C. D.7.已知命題:,,則為()A., B.,C., D.,8.已知等差數(shù)列中,,,則數(shù)列的前10項和()A.100 B.210 C.380 D.4009.已知函數(shù),,若對任意的總有恒成立,記的最小值為,則最大值為()A.1 B. C. D.10.已知數(shù)列滿足:,則()A.16 B.25 C.28 D.3311.如圖,是圓的一條直徑,為半圓弧的兩個三等分點,則()A. B. C. D.12.點為棱長是2的正方體的內(nèi)切球球面上的動點,點為的中點,若滿足,則動點的軌跡的長度為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在直角坐標(biāo)系中,已知點和點,若點在的平分線上,且,則向量的坐標(biāo)為___________.14.若一組樣本數(shù)據(jù)7,9,,8,10的平均數(shù)為9,則該組樣本數(shù)據(jù)的方差為______.15.已知實數(shù)滿足,則的最小值是______________.16.設(shè)直線過雙曲線的一個焦點,且與的一條對稱軸垂直,與交于兩點,為的實軸長的2倍,則雙曲線的離心率為.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)與的圖象關(guān)于直線對稱.(為自然對數(shù)的底數(shù))(1)若的圖象在點處的切線經(jīng)過點,求的值;(2)若不等式恒成立,求正整數(shù)的最小值.18.(12分)在中,內(nèi)角的邊長分別為,且.(1)若,,求的值;(2)若,且的面積,求和的值.19.(12分)已知為等差數(shù)列,為等比數(shù)列,的前n項和為,滿足,,,.(1)求數(shù)列和的通項公式;(2)令,數(shù)列的前n項和,求.20.(12分)已知函數(shù),曲線在點處的切線方程為.(1)求,的值;(2)證明函數(shù)存在唯一的極大值點,且.21.(12分)(Ⅰ)證明:;(Ⅱ)證明:();(Ⅲ)證明:.22.(10分)已知,函數(shù)有最小值7.(1)求的值;(2)設(shè),,求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

將雙曲線方程化為標(biāo)準(zhǔn)方程為,其漸近線方程為,化簡整理即得漸近線方程.【詳解】雙曲線得,則其漸近線方程為,整理得.故選:A【點睛】本題主要考查了雙曲線的標(biāo)準(zhǔn)方程,雙曲線的簡單性質(zhì)的應(yīng)用.2、D【解析】

,,得解.【詳解】,,,所以,故選D【點睛】比較不同數(shù)的大小,找中間量作比較是一種常見的方法.3、D【解析】

求得直線的斜率,利用曲線的導(dǎo)數(shù),求得切點坐標(biāo),代入直線方程,求得的值.【詳解】直線的斜率為,對于,令,解得,故切點為,代入直線方程得,解得或1.故選:D【點睛】本小題主要考查根據(jù)切線方程求參數(shù),屬于基礎(chǔ)題.4、A【解析】

由平面向量基本定理,化簡得,所以,即可求解,得到答案.【詳解】由平面向量基本定理,化簡,所以,即,故選A.【點睛】本題主要考查了平面向量基本定理的應(yīng)用,其中解答熟記平面向量的基本定理,化簡得到是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,數(shù)基礎(chǔ)題.5、A【解析】

根據(jù)函數(shù)圖像平移原則,即可容易求得結(jié)果.【詳解】因為,故要得到,只需將向左平移個單位長度.故選:A.【點睛】本題考查函數(shù)圖像平移前后解析式的變化,屬基礎(chǔ)題.6、C【解析】

由,,利用平面向量的數(shù)量積運(yùn)算,先求得利用平行四邊形的性質(zhì)可得結(jié)果.【詳解】如圖所示,

平行四邊形中,,

,,,

因為,

所以

,

,所以,故選C.【點睛】本題主要考查向量的幾何運(yùn)算以及平面向量數(shù)量積的運(yùn)算法則,屬于中檔題.向量的運(yùn)算有兩種方法:(1)平行四邊形法則(平行四邊形的對角線分別是兩向量的和與差);(2)三角形法則(兩箭頭間向量是差,箭頭與箭尾間向量是和).7、C【解析】

根據(jù)全稱量詞命題的否定是存在量詞命題,即得答案.【詳解】全稱量詞命題的否定是存在量詞命題,且命題:,,.故選:.【點睛】本題考查含有一個量詞的命題的否定,屬于基礎(chǔ)題.8、B【解析】

設(shè)公差為,由已知可得,進(jìn)而求出的通項公式,即可求解.【詳解】設(shè)公差為,,,,.故選:B.【點睛】本題考查等差數(shù)列的基本量計算以及前項和,屬于基礎(chǔ)題.9、C【解析】

對任意的總有恒成立,因為,對恒成立,可得,令,可得,結(jié)合已知,即可求得答案.【詳解】對任意的總有恒成立,對恒成立,令,可得令,得當(dāng),當(dāng),,故令,得當(dāng)時,當(dāng),當(dāng)時,故選:C.【點睛】本題主要考查了根據(jù)不等式恒成立求最值問題,解題關(guān)鍵是掌握不等式恒成立的解法和導(dǎo)數(shù)求函數(shù)單調(diào)性的解法,考查了分析能力和計算能力,屬于難題.10、C【解析】

依次遞推求出得解.【詳解】n=1時,,n=2時,,n=3時,,n=4時,,n=5時,.故選:C【點睛】本題主要考查遞推公式的應(yīng)用,意在考查學(xué)生對這些知識的理解掌握水平.11、B【解析】

連接、,即可得到,,再根據(jù)平面向量的數(shù)量積及運(yùn)算律計算可得;【詳解】解:連接、,,是半圓弧的兩個三等分點,,且,所以四邊形為棱形,.故選:B【點睛】本題考查平面向量的數(shù)量積及其運(yùn)算律的應(yīng)用,屬于基礎(chǔ)題.12、C【解析】

設(shè)的中點為,利用正方形和正方體的性質(zhì),結(jié)合線面垂直的判定定理可以證明出平面,這樣可以確定動點的軌跡,最后求出動點的軌跡的長度.【詳解】設(shè)的中點為,連接,因此有,而,而平面,,因此有平面,所以動點的軌跡平面與正方體的內(nèi)切球的交線.正方體的棱長為2,所以內(nèi)切球的半徑為,建立如下圖所示的以為坐標(biāo)原點的空間直角坐標(biāo)系:因此有,設(shè)平面的法向量為,所以有,因此到平面的距離為:,所以截面圓的半徑為:,因此動點的軌跡的長度為.故選:C【點睛】本題考查了線面垂直的判定定理的應(yīng)用,考查了立體幾何中軌跡問題,考查了球截面的性質(zhì),考查了空間想象能力和數(shù)學(xué)運(yùn)算能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

點在的平分線可知與向量共線,利用線性運(yùn)算求解即可.【詳解】因為點在的平線上,所以存在使,而,可解得,所以,故答案為:【點睛】本題主要考查了向量的線性運(yùn)算,利用向量的坐標(biāo)求向量的模,屬于中檔題.14、1【解析】

根據(jù)題意,由平均數(shù)公式可得,解得的值,進(jìn)而由方差公式計算,可得答案.【詳解】根據(jù)題意,數(shù)據(jù)7,9,,8,10的平均數(shù)為9,則,解得:,則其方差.故答案為:1.【點睛】本題考平均數(shù)、方差的計算,考查運(yùn)算求解能力,求解時注意求出的值,屬于基礎(chǔ)題.15、【解析】

先畫出不等式組對應(yīng)的可行域,再利用數(shù)形結(jié)合分析解答得解.【詳解】畫出不等式組表示的可行域如圖陰影區(qū)域所示.由題得y=-3x+z,它表示斜率為-3,縱截距為z的直線系,平移直線,易知當(dāng)直線經(jīng)過點時,直線的縱截距最小,目標(biāo)函數(shù)取得最小值,且.故答案為:-8【點睛】本題主要考查線性規(guī)劃問題,意在考查學(xué)生對這些知識的理解掌握水平和數(shù)形結(jié)合分析能力.16、【解析】

不妨設(shè)雙曲線,焦點,令,由的長為實軸的二倍能夠推導(dǎo)出的離心率.【詳解】不妨設(shè)雙曲線,焦點,對稱軸,由題設(shè)知,因為的長為實軸的二倍,,,,故答案為.【點睛】本題主要考查利用雙曲線的簡單性質(zhì)求雙曲線的離心率,屬于中檔題.求解與雙曲線性質(zhì)有關(guān)的問題時要結(jié)合圖形進(jìn)行分析,既使不畫出圖形,思考時也要聯(lián)想到圖形,當(dāng)涉及頂點、焦點、實軸、虛軸、漸近線等雙曲線的基本量時,要理清它們之間的關(guān)系,挖掘出它們之間的內(nèi)在聯(lián)系.求離心率問題應(yīng)先將用有關(guān)的一些量表示出來,再利用其中的一些關(guān)系構(gòu)造出關(guān)于的等式,從而求出的值.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)e;(2)2.【解析】

(1)根據(jù)反函數(shù)的性質(zhì),得出,再利用導(dǎo)數(shù)的幾何意義,求出曲線在點處的切線為,構(gòu)造函數(shù),利用導(dǎo)數(shù)求出單調(diào)性,即可得出的值;(2)設(shè),求導(dǎo),求出的單調(diào)性,從而得出最大值為,結(jié)合恒成立的性質(zhì),得出正整數(shù)的最小值.【詳解】(1)根據(jù)題意,與的圖象關(guān)于直線對稱,所以函數(shù)的圖象與互為反函數(shù),則,,設(shè)點,,又,當(dāng)時,,曲線在點處的切線為,即,代入點,得,即,構(gòu)造函數(shù),當(dāng)時,,當(dāng)時,,且,當(dāng)時,單調(diào)遞增,而,故存在唯一的實數(shù)根.(2)由于不等式恒成立,可設(shè),所以,令,得.所以當(dāng)時,;當(dāng)時,,因此函數(shù)在是增函數(shù),在是減函數(shù).故函數(shù)的最大值為.令,因為,,又因為在是減函數(shù).所以當(dāng)時,.所以正整數(shù)的最小值為2.【點睛】本題考查導(dǎo)數(shù)的幾何意義和利用導(dǎo)數(shù)解決恒成立問題,涉及到單調(diào)性、構(gòu)造函數(shù)法等,考查函數(shù)思想和計算能力.18、(1);(2).【解析】

(1)先由余弦定理求得,再由正弦定理計算即可得到所求值;

(2)運(yùn)用二倍角的余弦公式和兩角和的正弦公式,化簡可得sinA+sinB=5sinC,運(yùn)用正弦定理和三角形的面積公式可得a,b的方程組,解方程即可得到所求值.【詳解】解:(1)由余弦定理由正弦定理得(2)由已知得:所以------①又所以------②由①②解得【點睛】本題考查正弦定理、余弦定理和面積公式的運(yùn)用,以及三角函數(shù)的恒等變換,考查化簡整理的運(yùn)算能力,屬于中檔題.19、(1),;(2).【解析】

(1)設(shè)的公差為,的公比為,由基本量法列式求出后可得通項公式;(2)奇數(shù)項分一組用裂項相消法求和,偶數(shù)項分一組用等比數(shù)列求和公式求和.【詳解】(1)設(shè)的公差為,的公比為,由,.得:,解得,∴,;(2)由,得,為奇數(shù)時,,為偶數(shù)時,,∴.【點睛】本題考查求等差數(shù)列和等比數(shù)列的通項公式,考查分組求和法及裂項相消法、等差數(shù)列與等比數(shù)列的前項和公式,求通項公式采取的是基本量法,即求出公差、公比,由通項公式前項和公式得出相應(yīng)結(jié)論.?dāng)?shù)列求和問題,對不是等差數(shù)列或等比數(shù)列的數(shù)列求和,需掌握一些特殊方法:錯位相減法,裂項相消法,分組(并項)求和法,倒序相加法等等.20、(1)(2)證明見解析【解析】

(1)求導(dǎo),可得(1),(1),結(jié)合已知切線方程即可求得,的值;(2)利用導(dǎo)數(shù)可得,,再構(gòu)造新函數(shù),利用導(dǎo)數(shù)求其最值即可得證.【詳解】(1)函數(shù)的定義域為,,則(1),(1),故曲線在點,(1)處的切線方程為,又曲線在點,(1)處的切線方程為,,;(2)證明:由(1)知,,則,令,則,易知在單調(diào)遞減,又,(1),故存在,使得,且當(dāng)時,,單調(diào)遞增,當(dāng),時,,單調(diào)遞減,由于,(1),(2),故存在,使得,且當(dāng)時,,,單調(diào)遞增,當(dāng),時,,,單調(diào)遞減,故函數(shù)存在唯一的極大值點,且,即,則,令,則,故在上單調(diào)遞增,由于,故(2),即,.【點睛】本題考查導(dǎo)數(shù)的幾何意義以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,極值及最值,考查推理論證能力,屬于中檔題.21、(Ⅰ)見解析(Ⅱ)見解析(Ⅲ)見解析【解析】

運(yùn)用數(shù)學(xué)歸納法證明即可得到結(jié)果化簡,運(yùn)用累加法得出結(jié)果運(yùn)用放縮法和累加法進(jìn)行求證【詳解】(Ⅰ)數(shù)學(xué)歸納法證明時,①當(dāng)時,成立;②當(dāng)時,假設(shè)成立,則時所以時,成立綜上①②可知,時,(Ⅱ)由得所以;;故,又所以

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論