遼寧省遼西2026屆高一數(shù)學第一學期期末經典模擬試題含解析_第1頁
遼寧省遼西2026屆高一數(shù)學第一學期期末經典模擬試題含解析_第2頁
遼寧省遼西2026屆高一數(shù)學第一學期期末經典模擬試題含解析_第3頁
遼寧省遼西2026屆高一數(shù)學第一學期期末經典模擬試題含解析_第4頁
遼寧省遼西2026屆高一數(shù)學第一學期期末經典模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

遼寧省遼西2026屆高一數(shù)學第一學期期末經典模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù),若方程有8個相異實根,則實數(shù)的取值范圍A. B.C. D.2.下列關系式中,正確的是A. B.C. D.3.直線與直線平行,則的值為()A. B.2C. D.04.若函數(shù)在區(qū)間上單調遞減,則實數(shù)滿足的條件是A. B.C. D.5.若,則()A. B.C. D.26.《擲鐵餅者》取材于希臘的現(xiàn)實生活中的體育競技活動,刻畫的是一名強健的男子在擲鐵餅過程中最具有表現(xiàn)力的瞬間.現(xiàn)在把擲鐵餅者張開的雙臂近似看成一張拉滿弦的“弓”,擲鐵餅者的手臂長約為米,肩寬約為米,“弓”所在圓的半徑約為1.25米,則擲鐵餅者雙手之間的距離約為()A.1.012米 B.1.768米C.2.043米 D.2.945米7.已知函數(shù)的圖像中相鄰兩條對稱軸之間的距離為,當時,函數(shù)取到最大值,則A.函數(shù)的最小正周期為 B.函數(shù)的圖像關于對稱C.函數(shù)的圖像關于對稱 D.函數(shù)在上單調遞減8.下列函數(shù)是奇函數(shù),且在上單調遞增的是()A. B.C. D.9.下列各對角中,終邊相同的是()A.和 B.和C.和 D.和10.設為的邊的中點,為內一點,且滿足,則()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.將函數(shù)圖象上的所有點向右平行移動個單位長度,則所得圖象的函數(shù)解析式為___________.12.圓柱的側面展開圖是邊長分別為的矩形,則圓柱的體積為_____________13.函數(shù)是定義在R上的奇函數(shù),當時,2,則在R上的解析式為________.14.某公司在甲、乙兩地銷售同一種品牌的汽車,利潤(單位:萬元)分別為和,其中為銷售量(單位:輛).若該公司在兩地共銷售15輛汽車,則該公司能獲得的最大利潤為_____萬元.15.空間兩點與的距離是___________.16.已知某扇形的半徑為,面積為,那么該扇形的弧長為________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù)為冪函數(shù),且為奇函數(shù).(1)求的值,并確定的解析式;(2)令,求在的值域.18.已知函數(shù)(1)求的對稱軸方程;(2)若在上,函數(shù)最小值為且有兩個不相等的實數(shù)根,求實數(shù)m的取值范圍19.如圖,已知三棱錐中,,,為的中點,為的中點,且為正三角形.(1)求證:平面;(2)求證:平面;(3)若,,求三棱錐的體積.20.設函數(shù).(1)求的單調增區(qū)間;(2)求在上的最大值與最小值.21.已知點,,.(1)若,求的值;(2)若,其中為坐標原點,求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】畫出函數(shù)的圖象如下圖所示.由題意知,當時,;當時,設,則原方程化為,∵方程有8個相異實根,∴關于的方程在上有兩個不等實根令,則,解得∴實數(shù)的取值范圍為.選D點睛:已知函數(shù)零點的個數(shù)(方程根的個數(shù))求參數(shù)值(取值范圍)的方法(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉化成求函數(shù)的值域問題加以解決;(3)數(shù)形結合法:先對解析式變形,在同一平面直角坐標系中,畫出函數(shù)的圖象,然后數(shù)形結合求解,對于一些比較復雜的函數(shù)的零點問題常用此方法求解.本題中在結合函數(shù)圖象分析得基礎上還用到了方程根的分布的有關知識2、C【解析】不含任何元素的集合稱為空集,即為,而代表由單元素0組成的集合,所以,而與的關系應該是.故選C.3、B【解析】根據兩直線平行的條件列式可得結果.【詳解】當時,直線與直線垂直,不合題意;當時,因直線與直線平行,所以,解得.故選:B【點睛】易錯點點睛:容易忽視縱截距不等這個條件導致錯誤.4、A【解析】因為函數(shù)在區(qū)間上單調遞減,所以時,恒成立,即,故選A.5、B【解析】應用倍角正余弦公式及商數(shù)關系將目標式化為,結合已知即可求值.【詳解】由題意知,,故選:B.6、B【解析】由題分析出這段弓所在弧長,結合弧長公式求出其所對圓心角,雙手之間的距離為其所對弦長【詳解】解:由題得:弓所在的弧長為:;所以其所對的圓心角;兩手之間的距離故選:B7、D【解析】由相鄰對稱軸之間的距離,得函數(shù)的最小正周期,求得,再根據當時,函數(shù)取到最大值求得,對函數(shù)的性質進行判斷,可選出正確選項【詳解】因為函數(shù)的圖像中相鄰兩條對稱軸之間的距離為,所以,函數(shù)的最小正周期,所以,又因為當時,函數(shù)取到最大值,所以,,因為,所以,,函數(shù)最小正周期,A錯誤;函數(shù)圖像的對稱軸方程為,,B錯誤;函數(shù)圖像的對稱中心為,,C錯誤;所以選擇D【點睛】由的圖像求函數(shù)的解析式時,由函數(shù)的最大值和最小值求得,由函數(shù)的周期求得,代值進函數(shù)解析式可求得的值8、D【解析】利用冪函數(shù)的單調性和奇函數(shù)的定義即可求解.【詳解】當時,冪函數(shù)為增函數(shù);當時,冪函數(shù)為減函數(shù),故在上單調遞減,、和在上單調遞增,從而A錯誤;由奇函數(shù)定義可知,和不是奇函數(shù),為奇函數(shù),從而BC錯誤,D正確.故選:D.9、C【解析】利用終邊相同的角的定義,即可得出結論【詳解】若終邊相同,則兩角差,A.,故A選項錯誤;B.,故B選項錯誤;C.,故C選項正確;D.,故D選項錯誤.故選:C.【點睛】本題考查終邊相同的角的概念,屬于基礎題.10、C【解析】根據,確定點的位置;再根據面積公式,即可求得結果.【詳解】如圖取得點,使得四邊形為平行四邊形,,故選:C.【點睛】本題考查平面向量的基本定理,以及三角形的面積公式,屬綜合中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由題意利用函數(shù)的圖象變換規(guī)律,即可得到結果【詳解】將函數(shù)的圖象向右平移個單位,所得圖象對應的函數(shù)解析式,即.故答案為:.12、或【解析】有兩種形式的圓柱的展開圖,分別求出底面半徑和高,分別求出體積.【詳解】圓柱的側面展開圖是邊長為2a與a的矩形,當母線為a時,圓柱的底面半徑是,此時圓柱體積是;當母線為2a時,圓柱的底面半徑是,此時圓柱的體積是,綜上所求圓柱的體積是:或,故答案為或;本題考查圓柱的側面展開圖,圓柱的體積,容易疏忽一種情況,導致錯誤.13、【解析】由是定義域在上的奇函數(shù),根據奇函數(shù)的性質,可推得的解析式.【詳解】當時,2,即,設,則,,又為奇函數(shù),,所以在R上的解析式為.故答案為:.14、【解析】設該公司在甲地銷x輛,那么乙地銷15-x輛,利潤L(x)=5.06x-0.15x2+2(15-x)=-0.15x2+3.06x+30.由L′(x)=-0.3x+3.06=0,得x=10.2.且當x<10.2時,L′(x)>0,x>10.2時,L′(x)<0,∴x=10時,L(x)取到最大值,這時最大利潤為45.6萬元答案:45.6萬元15、【解析】根據兩點間的距離求得正確答案.【詳解】.故答案為:16、【解析】根據扇形面積公式可求得答案.【詳解】設該扇形的弧長為,由扇形的面積,可得,解得.故答案.【點睛】本題考查了扇形面積公式的應用,考查了學生的計算能力,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】(1)根據冪函數(shù)的定義及函數(shù)奇偶性的定義即可求解;(2)由(1),得,利用換元法得到,,再根據二次函數(shù)的性質即可求解.【小問1詳解】因為函數(shù)為冪函數(shù),所以,解得或,當時,函數(shù)是奇函數(shù),符合題意,當時,函數(shù)是偶函數(shù),不符合題意,綜上所述,的值為,函數(shù)的解析式為.【小問2詳解】由(1)知,,所以,令,則,,所以,,根據二次函數(shù)的性質知,的對稱軸為,開口向上,所以在上單調遞增;所以,所以函數(shù)在的值域為.18、(1),;(2).【解析】(1)應用二倍角正余弦公式、輔助角公式可得,根據余弦函數(shù)的性質求的對稱軸方程.(2)由題設可得,畫出的圖象,進而由已知條件及數(shù)形結合思想求m的取值范圍【小問1詳解】由題設,,令,,可得,.∴的對稱軸方程為,.【小問2詳解】令,在上,而時有,且圖象如下:又最小值為且有兩個不相等的實數(shù)根,由上圖知:,可得.19、(1)見詳解;(2)見詳解;(3).【解析】(1)先證,可證平面.(2)先證,得,結合可證得平面.(3)等積轉換,由,可求得體積.【詳解】(1)證明:因為為的中點,為的中點,所以是的中位線,.又,,所以.(2)證明:因為為正三角形,為的中點,所以.又,所以.又因為,,所以.因為,所以.又因為,,所以.(3)因為,,所以,即是三棱錐的高.因為,為的中點,為正三角形,所以.由,可得,在直角三角形中,由,可得.于是.所以.【點睛】本題考查空間線面平行與垂直的證明,體積的計算.空間中的平行與垂直的證明過程就是利用相關定義、判定定理和性質定理實現(xiàn)線線平行(垂直)、線面平行(垂直)、面面平行(垂直)的轉換.求三棱錐的體積常采用等積轉換的方法,選擇易求的底面積和高來求體積.20、(1)(2)最大值為2,最小值為【解析】(1)利用三角恒等變換化簡可得,根據正弦型函數(shù)的單調性計算即可得出結果.(2)由得,利用正弦函

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論