版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
AUTOMOTIVEINDUSTRYTurbochargingAutomotiveOperationswithGenAIByFelixStellmaszek,WolfgangSchnellb?cher,AlbertWaas,MichaelLoibl,andLarsMaeckerARTICLEJANUARY13,2026Theglobalautomotiveindustryislosingitsoldcertainties.Fordecades,well-engineeredproducts,scale,andsupply-chainmasteryde?nedsuccess.Today,thatfoundationiscrackingundertheweightofgeopoliticalfragmentation,shi允ingconsumerexpectations,risinginputcosts,andintensifyingcompetition.Giventheindustry’scomplex,asset-heavyvaluechainsacrossmanyregions,OEMsareuniquelyvulnerabletodisruption.Eventhelargestplayersnowfacelevelsofvolatilitytheycannolongercontrol.?2026BostonConsultingGroup?2026BostonConsultingGroupInthisnewreality,GenAIisemergingastheindustry’sstrategiccompass:asystemofintelligencethatleaderscanharnesstoanticipatedisruption,optimizecoststructures,andaccelerateexecutionacrosseveryfunction.FromR&Dandprocurementtosupplychainandmanufacturing,GenAIisalreadydemonstratingmeasurablegainsinproductivity,precision,andquality.Buttechnologyalonewon’tclosethegap.Capturingitsfullpotentialdemandsanewoperatingmodelthatiscenteredaroundtechnologyandbuiltonintelligence,integration,andpurposefuldesign.WefoundthatGenAIapplicationscoulddelivercumulativecostimprovementsofupto25%andproductivitygainsof20%to30%withinthreeyears.Beyondthesee?ciencygainsliesthepromiseofcreatingadaptive,self-learningsystems.ThisishowGenAIevolvesfromapowerfultooltothebackboneofanewoperatingmodelforautomakers.ThequestionfacingeveryOEMisnolongerwhethertouseGenAI,buthowfasttoscaleittotransformdecisionmaking,createvalue,andbuildresilience.TheimpactultimatelydependsonthechoicesOEMleadersmake.FunctionsInaworldde?nedbyvolatility,GenAIenablesOEMstoanticipateshocks,adaptinrealtime,andreducestructuralcosts.(See“AnEraofUncertaintyforOEMs.”)Itisnotjustadigitalupgrade;itisthecognitiveinfrastructurethatallowsleaderstomanageuncertaintywithcon?dence.-AnEraofUncertaintyforOEMsAcon?uenceofforceshascreatedalevelofuncertaintythatfewOEMshaveeverfaced.Thepastdecadesofglobalizationhavegivenwaytoaworldoflocalization,wheretraderoutesshi允overnight,energyprices?uctuatesharply,andlong-reliablesuppliersstruggletokeeppacewithtechnologicalchange.Consumerexpectationsaredivergingjustasfast.Electri?cation,connectivity,anddigitizationareadvancingatdi?erentspeedsacrossmarkets,forcingOEMstoservemultiplerealitiessimultaneously.Costpressurecontinuestointensify,withmaterials,energy,andlogisticsremainingvolatileaselectri?cationraisescapitalneeds.Meanwhile,supplierfragilitycompoundstherisks:Tier1partnersareunder?nancialandtechnologicalstrain,leavingmanufacturersexposed.?2026BostonConsultingGroupInthisenvironment,OEMs’traditionaloperatingmodel—o允ensiloed,manual,andoverlycomplex—cannotmanagethescaleorspeedofdisruptions.Astheirstrategiccompassfornavigatingthisturbulence,automakerscanturntoGenAItoprovideforesightbysensingshi允sinmarketsandsupplychainsbeforetheymaterialize;forcebyautomatingandacceleratinghigh-valuework;andconnectivitybyunitingdecisionsacrossfunctions.Theresultisafundamentallydi?erentmanagementparadigmanchoredininsight,speed,andcontrol.Toquantifythesee?ects,BCGanalyzedGenAI-drivenvaluecreationacrossfourOEMfunctions—R&Dandengineering,procurement,supplychainandlogistics,andmanufacturing—evaluatingimprovementsincoste?ciency,speed,quality,andconsistency.WhatfollowsisacloserlookathowGenAIsupportsleadersinreshapingeachfunctionandhowtheseadvancementsconvergeintoanewoperatingmodel.R&DandEngineering:AcceleratingInnovationCyclesInanindustrywherespeedandprecisiondeterminesurvival,traditionalR&Dmodelshavebecomeabottleneck.Sequentialwork?owsandmanualiterationscannolongerkeeppacewithrapidlyevolvingtechnologies,so允ware-de?nedarchitectures,andregulatorycomplexity.GenAIo?ersafundamentallydi?erentapproach.Actingasacreative,analytical,andexecutionalcopilot,ithelpsengineersenhanceproductivityacrosseverydevelopmentstage.(SeeExhibit1.)Inearlyconceptdevelopment,forexample,GenAIsupportsideation,breaksdownrequirements,evaluatesdesignoptions,andconductsinitiallegalandregulatorychecks,potentiallyreducinge?ortbyapproximately30%.Thesecapabilitiesnotonlyaccelerateearlythinkingbutalsoreducedownstreamreworkbyimprovingclarityandcompliancefromtheoutset.?2026BostonConsultingGroupAsworkmovesintomechanicsandelectricalandelectronicsdevelopment,GenAIautomatesthecreationoffunctionde?nitionsandsystemdescriptions,generatesfeaturelists,andoptimizescon?gurationvariants.Thesetasks,whichtraditionallyconsumeconsiderableengineeringcapacity,canbestreamlinedby10%to30%,enablingteamstoevaluatemorealternativesfasterwhilemaintainingaccuracyandconsistency.So允wareandfeaturedevelopment—oneofthemostresource-intensiveareas—bene?tsevenmore.GenAIassistswithcodegeneration,automatedso允warereviews,andalgorithmoptimizationindomainssuchasADASandautomateddriving.Thecombinationofgenerativedra允ing,intelligentdebugging,andAI-drivenauditscanreducee?ortbyroughly25%to30%,whileimprovingqualityanddocumentation.Inintegrationandtesting,wherecomplexityo允enpeaks,GenAIacceleratesmanagementofprototypevehiclesandtestbenches,analyzestestresults,andproducescomprehensivedocumentation.AI-generatedtestcasesfurthershortencycleswhileincreasingcoverage.Overalle?ciencygainsofcloseto30%areincreasinglyrealistic—unlockingtimefordeepersystemvalidationandperformanceoptimization.Eveninqualitymanagementandassurance—wheredocumentation,tickethandling,andsupplierevaluationsdominatetheworkload—GenAIcanmeaningfullyreshapetheprocess.Byidentifyingduplicatetickets,reviewingsupplierandmaterialorders,anddra允ingchange-managementdocumentation,AIassiststeamsinreducingmanuale?ortbyapproximately25%to30%whileimprovingtraceabilityandauditreadiness.Takentogether,theseimprovementsrepresentmorethanisolatedoptimizations.Theyrede?nehowengineeringorganizationsoperate.GenAIenablesengineerstoexplorethousandsofdesignpermutationsinhours,simulatingperformance,e?ciency,andsafetyattributessimultaneously.In?2026BostonConsultingGroupcomputer-aideddesignalone,designcyclesandreworkcanfallbyupto60%,allowingformoreambitiousexplorationwithincreasedreliabilityandregulatoryalignment.Asroutinetasksareautomated,engineeringshi允stowardhigher-valuecreativeandanalyticalwork,transforminglineardevelopmentcyclesintoacontinuousinnovationloop.Inthisnewparadigm,R&Devolvesfromacostcenterintoastrategicasset.GenAIempowersOEMstoenvision,test,anddelivernext-generationvehiclesatunprecedentedspeed,withtime-to-marketreductionsofupto40%increasinglywithinreach.Andthesameintelligenceisenablingorganizationstoprocurethematerials,technologies,andsuppliercapabilitiesneededtosustainthisnew,faster,andmoreadaptivemodelofdevelopment.Procurement:BuildingPredictiveandAdaptiveSupplyNetworksProcurementhasbecomeapressurepointforautomakers.Costconstraints,supplyvolatility,andgeopoliticaltensionarestretchingteamstotheirlimits.Traditionalprocurement—anchoredinbackward-lookingdataandmanualprocesses—cannolongerprotectmarginsorensurecontinuity.GenAIaddressesthesechallengesbyequippingprocurementleaderswithpredictiveintelligenceandautomation.AI-basedtransparencytoolscontinuouslyassesssupplierhealth,scanning?nancials,deliverypatterns,andmarketsignalsto?agdistressbeforedisruptionoccurs.Inthisway,GenAIbecomesprocurement’searly-warningsystem,helpingteamsbuildresilienceacrossthevaluechain.Atthesametime,GenAIdramaticallyimprovesday-to-dayexecution.AIassistantsautomatesourcingwork?ows—dra允ingtailoredletters,generatingtenders,evaluatingo?ers,andmanagingcommunications—reducingmanuale?ortwiththeseenablersbyupto50%acrossprocurementactivities.(SeeExhibit2.)Thesavingsradaracceleratesdataanalysisandhelpsbuyersunlockanadditional5%to7%insavingsfrommid-tierandsmallsuppliersthato允enreceiveinadequateattention.Thenegotiationassistantcutspreparationtimebyupto50%andimprovesoutcomesby1%to2%,whileautomatedo?eranalysishalvesthetimeneededtoevaluatebids.Evendownstream,toolsliketheclaimscoutcancapture0.5%to1%ofclaimablespend—suchasoverchargesandmissedrebates—byanalyzinglargevolumesofdataatscale.?2026BostonConsultingGroupBeyonde?ciency,OEMsgainforesight.Procurementbecomesastrategiccommandcenterwherebuyersactfaster,negotiatesmarter,andsecuresupplychainsbeforerisksmaterialize.PoweredbyGenAI,procurementevolvesfromtransactionalbuyingtostrategicsourcing,helpingOEMscapturevalueandbuildresilienceinafragmented,high-stakesworld.Forchiefprocuremento?cers,thismarksalong-overdueshi允,astheygainleverageandin?uencecommensuratewiththelargeshareofexternalspendingtheymanageacrossOEMs’totalvaluebase.Theapplicationsofpredictiveintelligencealsoextendtoend-to-endsupplynetworks,enablingautomakerstoanticipatedemandshi允sandrespondinrealtime.SupplyChainandLogistics:FromFordecades,supplychainshavebeenmanagedthroughspreadsheets,staticforecasts,andsiloedlogisticssystems.Thatmodelbreaksdownintoday’senvironmentofshi允ingtraderoutes,?2026BostonConsultingGroupunpredictabledemand,andrelentlessdisruption.Partialvisibilityandlaggingdatacauseerrorsandine?cienciesthatamplifyshocks,fromcomponentshortagestorouteclosures.GenAIistransformingsupplychainmanagementfromreactiveplanningtoincreasinglyautonomousorchestration.(SeeExhibit3.)Indemandandsupplyplanning,agentscanli允productivitybyupto40%whilerecalibratingsafety-stockparameterstoimproveservicelevels.Acrosstransportandlogistics,intelligentmode,route,andcarrieroptimizationdeliversproductivitygainsofupto30%.Thelargestimpactemergesdownstream,whereagent-enabledordermanagementandcustomerservicecanraiseproductivitybyupto70%.Thesegainsaresupportedbydataandperformanceenablers—suchasmasterdataandreal-timeKPIagents—thatcanfurtherimprovee?ciencybyupto30%.Themostforward-lookingOEMsaredevelopingself-steeringcontroltowersthatintegratedatafromsuppliers,production,andtransport.Thesesystemssensedisruptionsanddemandspikesinstantlyandcoordinaterapidresponsesacrossthenetwork.WithGenAIastheconnectivetissueofgloballogistics,OEMscananticipatechange,synchronizeexecution,andturnvolatilityintoasourceofcompetitiveagility.Whenthisorchestrationreachesthefactory?oor,ittransformsnotonlyhowOEMsplanandmovematerialsbuthowtheybuildtheirvehicles.?2026BostonConsultingGroupOperationsandManufacturing:TowardtheAutonomousPlantManufacturingistheautoindustry’sheartbeat,butinmostplants,therhythmstillfollowsdecades-oldpatterns.In?exibleproductionschedules,manualinspection,andrule-basedautomationconstrainresponsivenessandyield,leavingfactoriesexposedasproductcomplexityrisesandskilledlaborbecomesscarcer.GenAIisnowhelpingleadersreshapemanufacturingintoanautonomous,self-optimizingsystem.(SeeExhibit4.)Inproduction,automationagentscontinuallyre?nemachinebehaviortoli允overallequipmente?ectiveness(OEE)andlowerlaborandenergycosts.Training-basedroboticsfurtheracceleratesdeploymentbyhalvingautomationengineeringtime,whilepredictiveprocesscontrolsystemslearnfromthousandsofsignalstoreducescrapanddelivermoreconsistentoutput.Maintenanceevolvesfromreactive?re?ghtingtoproactiveorchestration.GenAI-poweredmaintenanceagentslowercostsbyroughly30%andreducedowntimeby20%,whilepredictivemaintenanceroutinescanboostinspectione?ciencybymorethan60%.Asequipmentconditionsarecontinuouslyassessed,interventionsbecometimely,precise,andfarlessdisruptive.Qualityoperationsexperienceanequallysigni?cantshi允:predictivequalitysystemsreducereworkbyupto50%,AI-visiontoolsenabletheinspectionofeverypartproduced,anddocumentationcopilotsremoveupto90%ofadministrativee?ort,freeingteamstofocusonsystemicimprovementratherthanpaperwork.?2026BostonConsultingGroupInmanufacturingengineering,GenAIstabilizesprocessesthroughautomatedsetpointoptimization,thermalcurvemonitoring,andintelligentlinebalancing,reducingscrapandenergyusewhileacceleratingramp-uptimesfornewmodels.Toenhanceproductionplanning,digitaltwinsandAI-drivenplanningenginescompresscycles,eliminatebottlenecks,andraisethroughput.Predictivedemandandsupply-chainmodelsreduceshortagesandcostlypremiumfreight.Together,thesecapabilitiespushthefactorybeyondthetraditionallimitsofleanmanufacturing.GenAIenablesplantstoadaptinstantlytomaterialchanges,processvariations,orequipmentbehavior,creatinganenvironmentthatlearnsandimprovescontinuously.Theresultisamanufacturingsystemde?nedbyhigherOEE,lowerdependencyonmanualwork,andalevelofresiliencethatsupportsfasterinnovationcyclesupstream.WithGenAIembeddedacrossplanning,engineering,operations,quality,andmaintenance,theautonomousplantbecomesanemergingreality—oneinwhichproductionsynchronizesseamlesslywithsourcing,logistics,andproductdevelopment.TheNewOperatingModel:ConnectingIntelligenceAcrosstheValueChainManyOEMsareracingtodeployGenAI,buttooo允entheyriskembeddingthesetoolsintolegacycomplexity.Addingadvancedtoolsontopofoutdated,fragmentedprocessesreinforcescomplexityinsteadofeliminatingit.TotrulyunlockGenAI’stransformativepotential,theenterpriseitselfmustevolvebyrethinkingdecision-making,data,andaccountabilityforanintelligentage.BeforeintroducingGenAI,leadingautomakersaredesigningnewprocessesandoperatingmodelsthatclarifydecisionrights,de?nedataownership,andembedperformanceaccountability.Oncethefoundationisset,uni?eddataplatformsandAIlayerscanconnectR&D,procurement,supplychain,andmanufacturingthroughsharedintelligence.Inthismodel,AIsupportsleadersandteamsbyanticipatingrisks,optimizingtradeo?s,andcoordinatingactionsacrossfunctionsinrealtime.Thepayo?isasystemthatlearnsasitruns.Forecasting,planning,andschedulingbecomeadaptive,self-improvingprocessesthatrespondinstantlytochangingconditions.Bygettingthisfoundationright,OEMscanmakeintelligencethetruebackboneofafaster,leaner,andmoreresilientorganization.?2026BostonConsultingGroupScalingGenAIwithPurposeandSpeedThewinnersofthenextdecadewillbeautomakersthatscaleGenAIboldlyyetresponsibly,embeddingitacrosstheirenterprisewithclearintent,stronggovernance,anddecisiveleadership.Asthetechnologymatures,theindustry’sleaderswillbesetapartbytheirspeedofexecutionandorganizationalreadinesstoscale.Exhibit5highlightsfourstagesofGenAImaturity.Acrossthesestages,theGenAImodalitiesemployedincrease—fromGenAIfoundationsandintegratedenterprisetoolstoAIagentsand,?nally,consortiaofagentsthatworkacrossinterconnectedwork?ows.Theshi允frompointsolutionstosystemsofintelligenceenablesOEMstostreamlinedecisions,accelerateexecution,andcoordinateoperationsatscale.Companiesthatadvancerapidlythroughthesestagesshareacommonpattern:theymovefastbutwithdiscipline.Theystartwithtargeted,high-impactpilotsthatsolverealpainpoints,andthenindustrializewhatworksthroughsharedplatforms,cleargovernance,andcross-functionalcapabilitybuilding.Theyunderstandthatsuccessdependslessonalgorithmsandmoreontheenablersthatsustainthem:cleandata,redesignedprocesses,andaworkforcetrainedtocollaboratewithintelligentsystems.Inanindustrywhereeveryfamiliarlandmarkisshi允ing,automakerscanturntoGenAIastheirstrategiccompass.Itgivesleaderstheclar
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 某著名企業(yè)全面診斷咨詢項(xiàng)目文件規(guī)范0613
- 某著名企業(yè)績效管理咨詢中期匯報(bào)0718
- 《GBT 9738-2008化學(xué)試劑 水不溶物測定通 用方法》專題研究報(bào)告
- 《GBT 21458-2008流動式起重機(jī) 額定起重量圖表》專題研究報(bào)告
- 《GBT 14270-2008毛絨纖維類型含量試驗(yàn)方法》專題研究報(bào)告
- 道路養(yǎng)護(hù)員實(shí)操培訓(xùn)課件
- 2026年廣東省惠州市高職單招數(shù)學(xué)考試題庫(含答案)
- 《美國胸外科協(xié)會磨玻璃結(jié)節(jié)管理專家共識2023》解讀
- 車險續(xù)保知識
- 內(nèi)蒙古對口招生語文模擬試題(一)帶答案
- 急性酒精中毒急救護(hù)理2026
- 2021-2022學(xué)年天津市濱海新區(qū)九年級上學(xué)期物理期末試題及答案
- 江蘇省蘇州市、南京市九校2025-2026學(xué)年高三上學(xué)期一輪復(fù)習(xí)學(xué)情聯(lián)合調(diào)研數(shù)學(xué)試題(解析版)
- 2026年中國醫(yī)學(xué)科學(xué)院醫(yī)學(xué)實(shí)驗(yàn)動物研究所第三批公開招聘工作人員備考題庫及答案詳解一套
- 2025年幼兒園教師業(yè)務(wù)考試試題及答案
- 國家開放大學(xué)《Python語言基礎(chǔ)》形考任務(wù)4答案
- (自2026年1月1日起施行)《增值稅法實(shí)施條例》重點(diǎn)解讀
- 2026春小學(xué)科學(xué)教科版(2024)三年級下冊《4.幼蠶在生長》教學(xué)設(shè)計(jì)
- 管道安裝協(xié)議2025年
- 2025寧夏賀蘭工業(yè)園區(qū)管委會招聘40人筆試參考題庫及答案解析
- 2026河南省氣象部門招聘應(yīng)屆高校畢業(yè)生14人(第2號)參考題庫附答案
評論
0/150
提交評論