版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
天津市塘沽第一中學2026屆數學高二上期末調研模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知圓與圓,則圓M與圓N的位置關系是()A.內含 B.相交C.外切 D.外離2.已知等差數列滿足,,數列滿足,記數列的前n項和為,若對于任意的,,不等式恒成立,則實數t的取值范圍為()A. B.C. D.3.已知數列滿足,且,那()A.19 B.31C.52 D.1044.繞著它的一邊旋轉一周得到的幾何體可能是()A.圓臺 B.圓臺或兩個圓錐的組合體C.圓錐或兩個圓錐的組合體 D.圓柱5.如圖所示,正方形邊長為2cm,它是水平放置的一個平面圖形的直觀圖,則原圖形的周長是()A.16cm B.cmC.8cm D.cm6.拋物線的焦點是A. B.C. D.7.過雙曲線的左焦點作x軸的垂線交曲線C于點P,為右焦點,若,則雙曲線的離心率為()A. B.C. D.8.已知命題p:,,則()A., B.,C., D.,9.在四棱錐中,底面為平行四邊形,為邊的中點,為邊上的一列點,連接,交于,且,其中數列的首項,則()A. B.為等比數列C. D.10.如圖,在三棱錐中,,,,點在平面內,且,設異面直線與所成角為,則的最大值為()A. B.C. D.11.橢圓的焦點坐標為()A., B.,C., D.,12.已知直線l1:ax+2y=0與直線l2:2x+(2a+2)y+1=0垂直,則實數a的值為()A.﹣2 B.C.1 D.1或﹣2二、填空題:本題共4小題,每小題5分,共20分。13.展開式的常數項是________14.已知函數有三個零點,則正實數a的取值范圍為_________15.已知函數,則的值是______.16.數列滿足,則_______________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,,,,平面,點F在線段上運動.(1)若平面,請確定點F的位置并說明理由;(2)若點F滿足,求平面與平面的夾角的余弦值.18.(12分)已知數列的前n項和為,且.(1)求數列的通項公式;(2)令,求數列的前n項和.19.(12分)設數列滿足(1)求的通項公式;(2)記數列的前項和為,是否存在實數,使得對任意恒成立.20.(12分)如圖,在直三棱柱中,,是中點.(1)求點到平面的的距離;(2)求平面與平面夾角的余弦值;21.(12分)已知數列的前n項積,數列為等差數列,且,(1)求與的通項公式;(2)若,求數列的前n項和22.(10分)【閱讀材料1】我們在研究兩個變量之間的相關關系時,往往先選取若干個樣本點(),(),……,(),將樣本點畫在平面直角坐標系內,就得到樣本的散點圖.觀察散點圖,如果所有樣本點都落在某一條直線附近,變量之間就具有線性相關關系,如果所有的樣本點都落在某一非線性函數圖象附近,變量之間就有非線性相關關系.在統(tǒng)計學中經常選擇線性或非線性(函數)回歸模型來刻畫相關關系,并且可以用適當的方法求出回歸模型的方程,還常用相關指數R2來刻畫回歸的效果,相關指數R2的計算公式為:當R2越大時,回歸方程的擬合效果越好;當R2越小時,回歸方程的擬合效果越差,R2是常用的選擇模型的指標之一,在實際應用中應該盡量選擇R2較大的回歸模型.【閱讀材料2】2021年6月17日9時22分,我國酒泉衛(wèi)星發(fā)射中心用長征二號F遙十二運載火箭,成功將神舟十二號載人飛船送入預定軌道,順利將聶海勝、劉伯明、湯洪胺3名航天員送入太空,發(fā)射取得圓滿成功,這標志著中國人首次進入自己的空間站.某公司負責生產的A型材料是神舟十二號的重要零件,該材料應用前景十分廣泛,該公司為了將A型材料更好地投入商用,擬對A型材料進行應用改造,根據市場調研與模擬,得到應用改造投入x(億元)與產品的直接收益y(億元)的數據統(tǒng)計如下:序號123456789101112x2346810132122232425y1522274048546068.56867.56665當0<x≤13時,建立了與的兩個回歸模型:模型①:;模型②:;當x>13時,確定y與x滿足的線性回歸直線方程為.根據以上閱讀材料,解答以下問題:(1)根據下列表格中的數據,比較當0<x≤13時模型①,②的相關指數R2的大小,并選擇擬合效果更好的模型.回歸模型模型①模型②回歸方程79.1320.2(2)當應用改造的投入為20億元時,以回歸直線方程為預測依據,計算公司的收益約為多少.附:①若最小二乘法求得回歸直線方程為,則;②③,當時,.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】將兩圓方程化為標準方程形式,計算圓心距,和兩圓半徑的和差比較,可得答案,【詳解】圓,即,圓心,圓,即,圓心,則故有,所以兩圓是相交的關系,故選:B2、B【解析】由等差數列基本量法求出通項公式,用裂項相消法求得,求出的最大值,然后利用關于的不等式是一次不等式列出滿足的不等關系求得其范圍【詳解】設等差數列公差為,則由已知得,解得,∴,,∴,易知數列是遞增數列,且,∴若對于任意的,,不等式恒成立,即,又,∴,解得或故選:B【點睛】本題考查求等差數列的通項公式,考查裂項相消法求數列的和,考查不等式恒成立問題,解題關鍵是掌握不等式恒成立問題的轉化與化歸思想,不等式恒成立首先轉化為求數列的單調性與最值,其次轉化為一次不等式恒成立3、D【解析】根據等比數列的定義,結合等比數列的通項公式進行求解即可.【詳解】因為,所以有,因此數列是公比的等比數列,因為,所以,故選:D4、C【解析】討論是按直角邊旋轉還是按斜邊旋轉【詳解】按直角邊選擇可得下圖圓錐:如果按直角邊旋轉可得下圖的兩個圓錐的組合體:故選:C5、A【解析】由直觀圖確定原圖形中平行四邊形中線段的長度與關系,然后計算可得【詳解】由斜二測畫法,原圖形是平行四邊形,,又,,,所以,周長為故選:A6、D【解析】先判斷焦點的位置,再從標準型中找出即得焦點坐標.【詳解】焦點在軸上,又,故焦點坐標為,故選D.【點睛】求圓錐曲線的焦點坐標,首先要把圓錐曲線的方程整理為標準方程,從而得到焦點的位置和焦點的坐標.7、D【解析】由題知是等腰直角三角形,,又根據通徑的結論知,結合可列出關于的二次齊次式,即可求解離心率.【詳解】由題知是等腰直角三角形,且,,又,,即,,,即,解得,,.故選:D.8、C【解析】由全稱命題的否定:將任意改存在并否定結論,即可寫出原命題p的否定.【詳解】由全稱命題的否定為特稱命題,∴是“,”.故選:C.9、A【解析】由得,為邊的中點得,設,所以,根據向量相等可判斷A選項;由得是公比為的等比數列,可判斷B選項;代入可判斷C選項;當時可判斷D選項.【詳解】由得,因為為邊的中點,所以,所以設,所以,所以,當時,A選項正確;,由得,是公比為的等比數列,所以,所以,所以,不是常數,故B選項錯誤;所以,由得,故C選項錯誤;當時,,所以,此時為的中點,與重合,即,,故D錯誤.故選:A.10、D【解析】設線段的中點為,連接,過點在平面內作,垂足為點,證明出平面,然后以點為坐標原點,、、分別為、、軸的正方向建立空間直角坐標系,設,其中,且,求出的最大值,利用空間向量法可求得的最大值.【詳解】設線段的中點為,連接,,為的中點,則,,則,,同理可得,,,平面,過點在平面內作,垂足為點,因為,所以,為等邊三角形,故為的中點,平面,平面,則,,,平面,以點為坐標原點,、、分別為、、軸的正方向建立如下圖所示的空間直角坐標系,因為是邊長為的等邊三角形,為的中點,則,則、、、,由于點在平面內,可設,其中,且,從而,因為,則,所以,,故當時,有最大值,即,故,即有最大值,所以,.故選:D.【點睛】方法點睛:求空間角的常用方法:(1)定義法:由異面直線所成角、線面角、二面角的定義,結合圖形,作出所求空間角,再結合題中條件,解對應的三角形,即可求出結果;(2)向量法:建立適當的空間直角坐標系,通過計算向量的夾角(兩直線的方向向量、直線的方向向量與平面的法向量、兩平面的法向量)的余弦值,即可求得結果.11、A【解析】由題方程化為橢圓的標準方程求出c,則橢圓的焦點坐標可求【詳解】由題得方程可化為,所以所以焦點為故選:A.12、B【解析】由題意,利用兩直線垂直的性質,兩直線垂直時,一次項對應系數之積的和等于0,計算求得a的值【詳解】∵直線l1:ax+2y=0與直線l2:2x+(2a+2)y+1=0垂直,∴a×2+2×(2a+2)=0,求得a=﹣,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求出的通項公式,令的指數為0,即可求解.【詳解】的通項公式是,,依題意,令,所以的展開式中的常數項為.故答案為:.14、【解析】求導易得函數有兩個極值點和,根據題意,由求解.【詳解】由,可得函數有兩個極值點和,,,若函數有三個零點,必有解得或故答案為:15、【解析】求出,代值計算可得的值.【詳解】因為,則,因此,.故答案為:.16、【解析】利用來求得,進而求得正確答案.【詳解】,,是數列是首項為,公差為的等差數列,所以,所以.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)F為BD的中點,證明見解析;(2).【解析】(1)由為的中點,取的中點,連接易證四邊形為平行四邊形,得到,再利用線面平行的判定定理證明;(2)根據題意可得平面ABC與平面AFC的夾角為二面角,取的中點H為坐標原點,建立空間直角坐標系,分別求得平面的一個法向量,平面的一個法向量,設二面角為,由求解.【小問1詳解】為的中點.如圖:取的中點,連接∵,分別為,的中點,∴且∵且∴平行且等于∴四邊形為平行四邊形,則∵平面ABC,平面ABC∴平面ABC【小問2詳解】由題意知,平面ABC與平面AFC的夾角為二面角,取的中點H為坐標原點,建立如圖所示的空間直角坐標系.因為三角形為等腰三角形,易求,則,,所以,,設平面的一個法向量為,則,即,解得設平面的一個法向量為,則,即,解得設二面角為,則,因為二面角為銳角,所以余弦值為.18、(1)(2)【解析】(1)根據與的關系,分和兩種情況,求出,再判斷是否合并;(2)利用錯位相減法求出數列的前n項和.【小問1詳解】,當時,,當時,,也滿足上式,數列的通項公式為:.【小問2詳解】由(1)可得,①②①②得,19、(1)(2)存在【解析】(1)利用“退作差”法求得的通項公式.(2)利用裂項求和法求得,由此求得.【小問1詳解】依題意①,當時,.當時,②,①-②得,,時,上式也符合.所以.【小問2詳解】.所以.故存在實數,使得對任意恒成立.20、(1)(2)【解析】(1)以為原點,為軸,為軸,為軸建立空間直角坐標系,求出平面的法向量為,再利用公式計算即可;(2)易得平面的法向量為,設平面與平面的夾角為,再利用計算即可小問1詳解】解:(1)以為原點,為軸,為軸,為軸建立空間直角坐標系所以因為,設平面的法向量為,則有,得,令則,所以可以取,設點到平面的距離為,則,所以點到平面的的距離的距離為;【小問2詳解】(2)因為平面,取平面的法向量為設平面與平面的夾角為,所以平面與平面夾角的余弦值21、(1),.(2).【解析】(1)由已知得,,兩式相除得,由已知得,求得數列的公差為,由等差數列的通項公式可求得;(2)運用錯位相減法可求得.【小問1詳解】解:因為數列的前n項積,所以,所以,兩式相除得,因為數列
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年四川現代種業(yè)集團科技創(chuàng)新中心有限公司分公司及權屬企業(yè)招聘備考題庫及1套完整答案詳解
- 2026年東蘭縣婦幼保健招聘備考題庫及參考答案詳解1套
- 2026年度鄭州市市直機關公開遴選公務員備考題庫參考答案詳解
- 2026年北京市建華實驗學校招聘備考題庫帶答案詳解
- 2026年POPs環(huán)境行為與控制原理研究組科研財務助理招聘備考題庫及參考答案詳解1套
- 2026年天津市腫瘤醫(yī)院健康管理中心外包崗位招聘備考題庫及一套完整答案詳解
- 2026年成都錦環(huán)城市管理服務有限公司招聘備考題庫及答案詳解參考
- 2026年國廣國際在線網絡(北京)有限公司招聘備考題庫及完整答案詳解1套
- 2026年消防員專業(yè)面試火場心理抗壓能力測評練習題及詳解
- 2026年老年三力測試反應能力訓練題庫及答案
- 14J936《變形縫建筑構造》
- 魯班鎖魯班球課件
- 新概念英語第二冊階段一練習冊
- 2024屆河北省石家莊市普通高中學校畢業(yè)年級教學質量摸底檢測物理試卷含答案
- 建設工程施工內部承包協(xié)議
- 【角色游戲對對幼兒社會性發(fā)展影響及促進對策7900字(論文)】
- 第四講 Meta分析的數據提取與分析-課件
- 宮內節(jié)育器放置術
- 新制定《無障礙環(huán)境建設法》主題PPT
- 期末復習主題班會
- 道路交通基礎設施韌性提升
評論
0/150
提交評論