版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
陜西省西北工業(yè)大學(xué)附中2026屆數(shù)學(xué)高二上期末調(diào)研試題注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)雙曲線的虛軸長(zhǎng)為,焦距為,則雙曲線的漸近線方程為()A. B.C. D.2.直線在軸上的截距為()A.3 B.C. D.3.若拋物線上的點(diǎn)到其焦點(diǎn)的距離是到軸距離的倍,則等于A. B.1C. D.24.?dāng)?shù)列滿足且,則的值是()A.1 B.4C.-3 D.65.若,在直線l上,則直線l一個(gè)方向向量為()A. B.C. D.6.已知拋物線C:,焦點(diǎn)為F,點(diǎn)到在拋物線上,則()A.3 B.2C. D.7.把直線繞原點(diǎn)逆時(shí)針轉(zhuǎn)動(dòng),使它與圓相切,則直線轉(zhuǎn)動(dòng)的最小正角度A. B.C. D.8.已知拋物線的焦點(diǎn)恰為雙曲線的一個(gè)頂點(diǎn),的另一頂點(diǎn)為,與在第一象限內(nèi)的交點(diǎn)為,若,則直線的斜率為()A. B.C. D.9.設(shè)函數(shù)是奇函數(shù)的導(dǎo)函數(shù),且,當(dāng)時(shí),,則不等式的解集為()A. B.C. D.10.設(shè),,,則,,大小關(guān)系是A. B.C. D.11.展開(kāi)式中第3項(xiàng)的二項(xiàng)式系數(shù)為()A.6 B.C.24 D.12.若、且,則下列式子一定成立的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知球的半徑為4,圓與圓為該球的兩個(gè)小圓,為圓與圓的公共弦,,若,則兩圓圓心的距離___________14.若雙曲線的漸近線為,則其離心率的值為_(kāi)______.15.不大于100的正整數(shù)中,被3除余1的所有數(shù)的和是___________16.計(jì)算:________三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知圓,P(2,0),M點(diǎn)是圓Q上任意一點(diǎn),線段PM的垂直平分線交半徑MQ于點(diǎn)C,當(dāng)M點(diǎn)在圓上運(yùn)動(dòng)時(shí),點(diǎn)C的軌跡為曲線C(1)求曲線C方程;(2)已知直線l:x=8,A、B是曲線C上的兩點(diǎn),且不在x軸上,,垂足為,,垂足為,若D(3,0),且的面積是△ABD面積的5倍,求△ABD面積的最大值18.(12分)如圖,直三棱柱中,底面是邊長(zhǎng)為2的等邊三角形,D為棱AC中點(diǎn).(1)證明:AB1//平面;(2)若面B1BC1與面BC1D的夾角余弦值為,求.19.(12分)已知函數(shù)(Ⅰ)解關(guān)于的不等式;(Ⅱ)若關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍20.(12分)在中,內(nèi)角A、B、C的對(duì)邊分別為a、b、c,滿足(1)求A的大小;(2)若,的面積為,求的周長(zhǎng)21.(12分)“既要金山銀山,又要綠水青山”.濱江風(fēng)景區(qū)在一個(gè)直徑為100米的半圓形花園中設(shè)計(jì)一條觀光線路(如圖所示).在點(diǎn)與圓弧上的一點(diǎn)(不同于A,B兩點(diǎn))之間設(shè)計(jì)為直線段小路,在直線段小路的兩側(cè)(注意是兩側(cè))種植綠化帶;再?gòu)狞c(diǎn)到點(diǎn)設(shè)計(jì)為沿弧的弧形小路,在弧形小路的內(nèi)側(cè)(注意是一側(cè))種植綠化帶(注:小路及綠化帶的寬度忽略不計(jì)).(1)設(shè)(弧度),將綠化帶總長(zhǎng)度表示為的函數(shù);(2)試確定的值,使得綠化帶總長(zhǎng)度最大.(弧度公式:,其中為弧所對(duì)的圓心角)22.(10分)雙曲線(,)的離心率,且過(guò)點(diǎn).(1)求a,b的值;(2)求與雙曲線C有相同漸近線,且過(guò)點(diǎn)的雙曲線的標(biāo)準(zhǔn)方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】求出、的值,即可得出雙曲線的漸近線方程.【詳解】由已知可得,,則,因此,該雙曲線的漸近線方程為.故選:B.2、A【解析】把直線方程由一般式化成斜截式,即可得到直線在軸上的截距.【詳解】由,可得,則直線在軸上的截距為3.故選:A3、D【解析】根據(jù)拋物線的定義及題意可知3x0=x0+,得出x0求得p,即可得答案【詳解】由題意,3x0=x0+,∴x0=∴∵p>0,∴p=2.故選D【點(diǎn)睛】本題主要考查了拋物線的定義和性質(zhì).考查了考生對(duì)拋物線定義的掌握和靈活應(yīng)用,屬于基礎(chǔ)題4、A【解析】根據(jù)題意,由于,可知數(shù)列是公差為-3的等差數(shù)列,則可知d=-3,由于=,故選A5、C【解析】利用直線的方向向量的定義直接求解.【詳解】因?yàn)?,在直線l上,所以直線l的一個(gè)方向向量為.故選:C.6、D【解析】利用拋物線的定義求解.【詳解】因?yàn)辄c(diǎn)在拋物線上,,解得,利用拋物線的定義知故選:D7、B【解析】根據(jù)直線過(guò)原點(diǎn)且與圓相切,求出直線的斜率,再數(shù)形結(jié)合計(jì)算最小旋轉(zhuǎn)角【詳解】解析:由題意,設(shè)切線為,∴.∴或.∴時(shí)轉(zhuǎn)動(dòng)最小∴最小正角為.故選B.【點(diǎn)睛】本題考查直線與圓的位置關(guān)系,屬于基礎(chǔ)題8、D【解析】根據(jù)題意,列出的方程組,解得,再利用斜率公式即可求得結(jié)果.【詳解】因?yàn)閽佄锞€的焦點(diǎn),由題可知;又點(diǎn)在拋物線上,故可得;又,聯(lián)立方程組可得,整理得,解得(舍)或,此時(shí),又,故直線的斜率為.故選:D.9、D【解析】設(shè),則,分析可得為偶函數(shù)且,求出的導(dǎo)數(shù),分析可得在上為減函數(shù),進(jìn)而分析可得上,,在上,,結(jié)合函數(shù)的奇偶性可得上,,在上,,又由即,則有或,據(jù)此分析可得答案【詳解】根據(jù)題意,設(shè),則,若奇函數(shù),則,則有,即函數(shù)為偶函數(shù),又由,則,則,,又由當(dāng)時(shí),,則在上為減函數(shù),又由,則在上,,在上,,又由為偶函數(shù),則在上,,在上,,即,則有或,故或,即不等式的解集為;故選:D10、A【解析】構(gòu)造函數(shù),根據(jù)的單調(diào)性可得(3),從而得到,,的大小關(guān)系【詳解】考查函數(shù),則,在上單調(diào)遞增,,(3),即,,故選:【點(diǎn)睛】本題考查了利用函數(shù)的單調(diào)性比較大小,考查了構(gòu)造法和轉(zhuǎn)化思想,屬基礎(chǔ)題11、A【解析】根據(jù)二項(xiàng)展開(kāi)式的通項(xiàng)公式,即可求解.【詳解】由題意,二項(xiàng)式展開(kāi)式中第3項(xiàng),所以展開(kāi)式中第3項(xiàng)的二項(xiàng)式系數(shù)為.故選:A.12、B【解析】構(gòu)造函數(shù),利用函數(shù)在上的單調(diào)性可判斷AB選項(xiàng);構(gòu)造函數(shù),利用函數(shù)在上的單調(diào)性可判斷CD選項(xiàng).【詳解】對(duì)于AB選項(xiàng),構(gòu)造函數(shù),其中,則,所以,函數(shù)在上單調(diào)遞增,因?yàn)?、且,則,即,A錯(cuò)B對(duì);對(duì)于CD選項(xiàng),構(gòu)造函數(shù),其中,則.當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞減,當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞增,故函數(shù)在上不單調(diào),無(wú)法確定與的大小關(guān)系,故CD都錯(cuò).故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】欲求兩圓圓心的距離,將它放在與球心組成的三角形中,只要求出球心角即可,通過(guò)球的性質(zhì)構(gòu)成的直角三角形即可解得【詳解】∵,球半徑為4,∴小圓的半徑為,∵小圓中弦長(zhǎng),作垂直于,∴,同理可得,在直角三角形中,∵,,∴,∴,∴故答案為:.14、【解析】利用漸近線斜率為和雙曲線的關(guān)系可構(gòu)造關(guān)于的齊次方程,進(jìn)而求得結(jié)果.【詳解】由漸近線方程可知:,即,,,(負(fù)值舍掉).故答案為:.【點(diǎn)睛】本題考查根據(jù)雙曲線漸近線方程求解離心率的問(wèn)題,關(guān)鍵是利用漸進(jìn)線的斜率構(gòu)造關(guān)于的齊次方程.15、1717【解析】利用等差數(shù)列的前項(xiàng)和公式可求所有數(shù)的和.【詳解】100以內(nèi)的正整數(shù)中,被3除余1由小到大構(gòu)成等差數(shù)列,其首項(xiàng)為1,公差為3,共有項(xiàng),它們的和為,故答案為:.16、【解析】根據(jù)無(wú)窮等比數(shù)列的求和公式直接即可求出答案.【詳解】.故答案為:.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】(1)由定義法求出曲線C的方程;(2)先判斷出直線AB過(guò)定點(diǎn)H(2,0)或H(4,0).當(dāng)AB過(guò)定點(diǎn)H(4,0),求出最大;當(dāng)H(2,0)時(shí),可設(shè)直線AB:.用“設(shè)而不求法”表示出,不妨設(shè)(),利用函數(shù)的單調(diào)性求出△ABD面積的最大值.【小問(wèn)1詳解】因?yàn)榫€段PM的垂直平分線交半徑MQ于點(diǎn)C,所以,所以,符合橢圓的定義,所以點(diǎn)C的軌跡為以P、Q為焦點(diǎn)的橢圓,其中,所以,所以曲線C的方程為.【小問(wèn)2詳解】不妨設(shè)直線l:x=8交x軸于G(8,0),直線AB交x軸于H(h,0),則,.因?yàn)?,,,所?又因?yàn)榈拿娣e是△ABD面積的5倍,所以.因?yàn)镚(8,0),D(3,0),所以,所以H(2,0)或H(4,0).當(dāng)H(4,0)時(shí),則H與A(或H與B)重合,不妨設(shè)H與A重合,此時(shí),,要使△ABD面積最大,只需B在短軸頂點(diǎn)時(shí),=2最大,所以最大;當(dāng)H(2,0)時(shí),要想構(gòu)成三角形ABD,直線AB的斜率不為0,可設(shè)直線AB:.設(shè),則,消去x可得:,所以,,,所以.不妨設(shè)(),則,由對(duì)勾函數(shù)的性質(zhì)可知,在上單調(diào)遞減,所以當(dāng)t=4時(shí),,此時(shí)最大綜上所述,△ABD面積的最大值為.【點(diǎn)睛】(1)“設(shè)而不求”是一種在解析幾何中常見(jiàn)的解題方法,可以解決直線與二次曲線相交的問(wèn)題;(2)解析幾何中最值計(jì)算方法有兩類(lèi):①幾何法:利用幾何圖形求最值;②代數(shù)法:表示為函數(shù),利用函數(shù)求最值.18、(1)證明見(jiàn)解析(2)【解析】(1)連接,使,連接,即可得到,從而得證;(2)設(shè),以為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,求出平面的法向量,平面的法向量,利用空間向量的數(shù)量積求解面與面的夾角余弦值為,從而得到方程,解得即可【小問(wèn)1詳解】證明:如圖,連,使,連,由直三棱柱,所以四邊形為矩形,所以為中點(diǎn),在中,、分別為和中點(diǎn),,又因平面平面,面,面,平面【小問(wèn)2詳解】解:設(shè),以為坐標(biāo)原點(diǎn)如圖建系,則,,所以、,設(shè)平面的法向量則,故可取設(shè)平面的法向量,則,故可取,因?yàn)槊媾c面的夾角余弦值為,所以,即,解得,19、(Ⅰ);(Ⅱ)【解析】(Ⅰ)用找零點(diǎn)法去絕對(duì)值,然后再解不等式.(Ⅱ)將原函數(shù)轉(zhuǎn)化為分段函數(shù),再結(jié)合函數(shù)圖像求得其最小值.將恒成立轉(zhuǎn)化為試題解析:(Ⅰ)或或或所以原不等式解集為(Ⅱ),由函數(shù)圖像可知,所以要使恒成立,只需考點(diǎn):1絕對(duì)值不等式;2恒成立問(wèn)題;3轉(zhuǎn)化思想20、(1)(2)【解析】(1)通過(guò)正弦定理將邊化為角的關(guān)系,可得,進(jìn)而可得結(jié)果;(2)由面積公式得,結(jié)合余弦定理得,進(jìn)而得結(jié)果.【小問(wèn)1詳解】∵∴由正弦定理,得∴∵,∴,故【小問(wèn)2詳解】由(1)知,∵∴∵由余弦定理知,∴,故∴,故∴的周長(zhǎng)為21、(1);(2).【解析】(1)在直角三角形中,求出,在扇形中利用弧長(zhǎng)公式求出弧的長(zhǎng)度,則可得函數(shù);(2)利用導(dǎo)數(shù)可求得結(jié)果.【詳解】(1)如圖,連接在直角三角形中,所以由于則弧的長(zhǎng)為(2)由(1)可知,令得,因?yàn)?/p>
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年中北大學(xué)招聘?jìng)淇碱}庫(kù)及一套答案詳解
- 2026年北京國(guó)科科服控股有限公司招聘?jìng)淇碱}庫(kù)帶答案詳解
- 2026年吉安市文化傳媒集團(tuán)有限責(zé)任公司公開(kāi)招聘勞務(wù)派遣工作人員5人備考題庫(kù)及答案詳解1套
- 2026年北京數(shù)智星通科技有限公司招聘?jìng)淇碱}庫(kù)及完整答案詳解一套
- 2026年四川大學(xué)教育培訓(xùn)部業(yè)務(wù)崗工作人員招聘?jìng)淇碱}庫(kù)附答案詳解
- 2026年廣大附中南沙實(shí)驗(yàn)學(xué)校招聘小學(xué)數(shù)學(xué)教師(編外)的備考題庫(kù)有答案詳解
- 2025年佛山市三水區(qū)殯儀館編外人員招聘?jìng)淇碱}庫(kù)含答案詳解
- 2026年南昌市灣里管理局公開(kāi)選調(diào)事業(yè)單位工作人員24人備考題庫(kù)及完整答案詳解1套
- 2026年北京中科格瑞科技發(fā)展有限公司招聘?jìng)淇碱}庫(kù)及1套參考答案詳解
- 2026年中國(guó)農(nóng)業(yè)科學(xué)院作物科學(xué)研究所作物倍性育種技術(shù)創(chuàng)新研究組科研助理招聘?jìng)淇碱}庫(kù)帶答案詳解
- 云南師大附中2026屆高三高考適應(yīng)性月考卷(六)思想政治試卷(含答案及解析)
- 建筑安全風(fēng)險(xiǎn)辨識(shí)與防范措施
- CNG天然氣加氣站反恐應(yīng)急處置預(yù)案
- 培訓(xùn)教師合同范本
- 2026年黑龍江單招職業(yè)技能案例分析專項(xiàng)含答案健康養(yǎng)老智慧服務(wù)
- 2025年5年級(jí)期末復(fù)習(xí)-25秋《王朝霞期末活頁(yè)卷》語(yǔ)文5上A3
- 定額〔2025〕1號(hào)文-關(guān)于發(fā)布2018版電力建設(shè)工程概預(yù)算定額2024年度價(jià)格水平調(diào)整的通知
- 護(hù)理死亡病例討論總結(jié)
- 鋼板樁支護(hù)工程投標(biāo)文件(54頁(yè))
- 國(guó)家職業(yè)技能標(biāo)準(zhǔn) (2021年版) 無(wú)人機(jī)裝調(diào)檢修工
評(píng)論
0/150
提交評(píng)論