版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
青海省西寧第二十一中學(xué)2026屆數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖1所示,拋物面天線是指由拋物面(拋物線繞其對稱軸旋轉(zhuǎn)形成的曲面)反射器和位于其焦點上的照射器(饋源,通常采用喇叭天線)組成的單反射面型天線,廣泛應(yīng)用于微波和衛(wèi)星通訊等,具有結(jié)構(gòu)簡單、方向性強、工作頻帶寬等特點.圖2是圖1的軸截面,,兩點關(guān)于拋物線的對稱軸對稱,是拋物線的焦點,是饋源的方向角,記為.焦點到頂點的距離與口徑的比為拋物面天線的焦徑比,它直接影響天線的效率與信噪比等.若饋源方向角滿足,則該拋物面天線的焦徑比為()A. B.C. D.22.德國數(shù)學(xué)家萊布尼茨是微積分的創(chuàng)立者之一,他從幾何問題出發(fā),引進(jìn)微積分概念.在研究切線時認(rèn)識到,求曲線的切線的斜率依賴于縱坐標(biāo)的差值和橫坐標(biāo)的差值,以及當(dāng)此差值變成無限小時它們的比值,這也正是導(dǎo)數(shù)的幾何意義.設(shè)是函數(shù)的導(dǎo)函數(shù),若,且對,,且總有,則下列選項正確的是()A. B.C. D.3.如圖,過拋物線的焦點的直線交拋物線于點、,交其準(zhǔn)線于點,若,且,則的值為()A. B.C. D.4.當(dāng)我們停放自行車時,只要將自行車旁的撐腳放下,自行車就穩(wěn)了,這用到了()A.三點確定一平面 B.不共線三點確定一平面C.兩條相交直線確定一平面 D.兩條平行直線確定一平面5.已知,,2成等差數(shù)列,則在平面直角坐標(biāo)系中,點M(x,y)的軌跡為()A. B.C. D.6.在等差數(shù)列中,,則等于A.2 B.18C.4 D.97.在中,,,,則此三角形()A.無解 B.一解C.兩解 D.解的個數(shù)不確定8.如圖,在平行六面體中,AC與BD的交點為M,設(shè),,,則下列向量中與相等的向量是()A. B.C. D.9.下列命題中的假命題是()A.若log2x<2,則0<x<4B.若與共線,則與的夾角為0°C.已知各項都不為零的數(shù)列{an}滿足an+1-2an=0,則該數(shù)列為等比數(shù)列D.點(π,0)是函數(shù)y=sinx圖象上一點10.直線在y軸上的截距為()A.-1 B.1C. D.11.已知集合,從集合A中任取一點P,則點P滿足約束條件的概率為()A. B.C. D.12.若任取,則x與y差的絕對值不小于1的概率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.圓的圓心坐標(biāo)為___________;半徑為___________.14.我國古代,9是數(shù)字之極,代表尊貴之意,所以中國古代皇家建筑中包含許多與9相關(guān)的設(shè)計.例如,北京天壇圓丘的底面由扇環(huán)形的石板鋪成(如圖),最高一層是一塊天心石,圍繞它的第一圈有9塊石板,從第二圈開始,每一圈比前一圈多9塊,共有9圈,則前9圈的石板總數(shù)是__________15.已知圓和直線.(1)求直線l所經(jīng)過的定點的坐標(biāo),并判斷直線與圓的位置關(guān)系;(2)求當(dāng)k取什么值,直線被圓截得的弦最短,并求這條最短弦的長.16.設(shè)空間向量,且,則___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知直線l:2mx-y-8m-3=0和圓C:x2+y2-6x+12y+20=0.(1)m∈R時,證明l與C總相交;(2)m取何值時,l被C截得的弦長最短?求此弦長18.(12分)在如圖所示的幾何體中,四邊形ABCD為正方形,平面ABCD,,,.(1)求證:平面PAD;(2)求直線AB與平面PCE所成角的正弦值;19.(12分)已知函數(shù)在處的切線與軸平行(1)求的值;(2)判斷在上零點的個數(shù),并說明理由20.(12分)在△ABC中,角A,B,C所對的邊分別a,b,c.已知2bcosB=ccosA+acosC(1)求B;(2)若a=2,,設(shè)D為CB延長線上一點,且AD⊥AC,求線段BD的長21.(12分)新疆長絨棉品質(zhì)優(yōu)良,纖維柔長,被世人譽為“棉中極品”,產(chǎn)于我國新疆的吐魯番盆地、塔里木盆地的阿克蘇、喀什等地.棉花的纖維長度是評價棉花質(zhì)量的重要指標(biāo)之一,在新疆某地區(qū)成熟的長絨棉中隨機抽測了一批棉花的纖維長度(單位:mm),將樣本數(shù)據(jù)制成頻率分布直方圖如下:(1)求的值;(2)估計該樣本數(shù)據(jù)的平均數(shù)(同一組中的數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的中點值為代表);(3)根據(jù)棉花纖維長度將棉花等級劃分如下:纖維長度小于30mm大于等于30mm,小于40mm大于等于40mm等級二等品一等品特等品從該地區(qū)成熟的棉花中隨機抽測兩根棉花的纖維長度,用樣本的頻率估計概率,求至少有一根棉花纖維長度達(dá)到特等品的概率.22.(10分)某學(xué)校高一、高二、高三的三個年級學(xué)生人數(shù)如下表,按年級分層抽樣的方法評選優(yōu)秀學(xué)生50人,其中高三有10人.高三高二高一女生100150z男生300450600(1)求z的值;(2)用分層抽樣的方法在高一學(xué)生中抽取一個容量為5的樣本,將該樣本看成一個總體,從中任取2人,求至少有1名女生的概率;(3)用隨機抽樣的方法從高二女生中抽取8人,經(jīng)檢測她們的得分如圖所示,把這8人的得分看作一個總體,從中任取一個數(shù),求該數(shù)與樣本平均數(shù)之差的絕對值不超過5分的概率.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】建立平面直角坐標(biāo)系,利用題設(shè)條件得到得點坐標(biāo),代入拋物線方程化簡即可求解【詳解】建立如圖所示的平面直角坐標(biāo)系,設(shè)拋物線的方程為()在中,則所以則所以,所以將代入拋物線方程中得所以或即或(舍)當(dāng)時,故選:B2、D【解析】由,得在上單調(diào)遞增,并且由的圖象是向上凸,進(jìn)而判斷選項.【詳解】由,得在上單調(diào)遞增,因為,所以,故A不正確;對,,且,總有,可得函數(shù)的圖象是向上凸,可用如圖的圖象來表示,由表示函數(shù)圖象上各點處的切線的斜率,由函數(shù)圖象可知,隨著的增大,的圖象越來越平緩,即切線的斜率越來越小,所以,故B不正確;,表示點與點連線的斜率,由圖可知,所以D正確,C不正確.故選:D.【點睛】本題考查以數(shù)學(xué)文化為背景,導(dǎo)數(shù)的幾何意義,根據(jù)函數(shù)的單調(diào)性比較函數(shù)值的大小,屬于中檔題型.3、B【解析】分別過點、作準(zhǔn)線的垂線,垂足分別為點、,設(shè),根據(jù)拋物線的定義以及直角三角形的性質(zhì)可求得,結(jié)合已知條件求得,分析出為的中點,進(jìn)而可得出,即可得解.【詳解】如圖,分別過點、作準(zhǔn)線的垂線,垂足分別為點、,設(shè),則由己知得,由拋物線的定義得,故,在直角三角形中,,,因為,則,從而得,所以,,則為的中點,從而.故選:B.4、B【解析】自行車前后輪與撐腳分別接觸地面,使得自行車穩(wěn)定,此時自行車與地面的三個接觸點不在同一條線上.【詳解】自行車前后輪與撐腳分別接觸地面,此時三個接觸點不在同一條線上,所以可以確定一個平面,即地面,從而使得自行車穩(wěn)定.故選B項.【點睛】本題考查不共線的三個點確定一個平面,屬于簡單題.5、A【解析】已知,,2成等差數(shù)列,得到,化簡得到【詳解】已知,,2成等差數(shù)列,得到,化簡得到可知是焦點在x軸上的拋物線的一支.故答案為A.【點睛】這個題目考查的是對數(shù)的運算以及化簡公式的應(yīng)用,也涉及到了軌跡的問題,求點的軌跡,通常是求誰設(shè)誰,再根據(jù)題干將等量關(guān)系轉(zhuǎn)化為代數(shù)關(guān)系,從而列出方程,化簡即可.6、D【解析】利用等差數(shù)列性質(zhì)得到,,計算得到答案.詳解】等差數(shù)列中,故選D【點睛】本題考查了等差數(shù)列的計算,利用性質(zhì)可以簡化運算,是解題的關(guān)鍵.7、C【解析】利用正弦定理求出的值,再根據(jù)所求值及a與b的大小關(guān)系即可判斷作答.【詳解】在中,,,,由正弦定理得,而為銳角,且,則或,所以有兩解故選:C8、B【解析】根據(jù)向量加法和減法法則即可用、、表示出.【詳解】故選:B.9、B【解析】四個選項中需要分別利用對數(shù)函數(shù)的性質(zhì),向量共線的定義,等比數(shù)列的定義以及三角函數(shù)圖像判斷,根據(jù)題意結(jié)合知識點,即可得出結(jié)果.【詳解】選項A,由于此對數(shù)函數(shù)單調(diào)遞增,并且結(jié)合對數(shù)函數(shù)定義域,即可求得結(jié)果,所以是真命題;選項B,向量共線,夾角可能是或,所以是假命題;選項C,將式子變形可得,符合等比數(shù)列定義,所以是真命題;選項D,將點代入解析式,等號成立,所以是真命題;故選B.【點睛】本題考查命題真假的判定,根據(jù)題意結(jié)合各知識點即可判斷真假,需要熟練掌握對數(shù)函數(shù)、等比數(shù)列、向量夾角以及三角函數(shù)的基本性質(zhì).10、A【解析】把直線方程由一般式化成斜截式,即可得到直線在軸上的截距.【詳解】由,可得,則直線在軸上的截距為.故選:A11、C【解析】根據(jù)圓的性質(zhì),結(jié)合兩條直線的位置關(guān)系、幾何概型計算公式進(jìn)行求解即可.【詳解】,圓心坐標(biāo)為,半徑為,直線互相垂直,且交點為,由圓的性質(zhì)可知:點P滿足約束條件的概率為,故選:C12、C【解析】根據(jù)題意,在平面直角坐標(biāo)系中分析以及與差的絕對值不小于1所對應(yīng)的平面區(qū)域,求出其面積,由幾何概型公式計算可得答案.【詳解】根據(jù)題意,,其對應(yīng)的區(qū)域為正方形,其面積,若與差的絕對值不小于1,即,即或,對應(yīng)的區(qū)域為圖中的陰影部分,其面積為,故與差的絕對值不小于1的概率.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】配方后可得圓心坐標(biāo)和半徑【詳解】將圓的一般方程化為圓標(biāo)準(zhǔn)方程是,圓心坐標(biāo)為,半徑為故答案為:;14、405【解析】前9圈的石板數(shù)依次組成一個首項為9,公差為9的等差數(shù)列,15、(1)直線過定點P(4,3),直線和圓總有兩個不同交點(2)k=1,【解析】(1)把直線方程化為點斜式方程即可;(2)由圓的性質(zhì)知,當(dāng)直線與PC垂直時,弦長最短.【小問1詳解】直線方程可化為,則直線過定點P(4,3),又圓C標(biāo)準(zhǔn)方程為,圓心為,半徑為,而,所以點P在圓內(nèi),所以不論k取何值,直線和圓總有兩個不同交點.【小問2詳解】由圓的性質(zhì)知,當(dāng)直線與PC垂直時,弦長最短.,所以k=1時弦長最短.弦長為.16、1【解析】根據(jù),由求解.【詳解】因為向量,且,所以,即,解得.故答案為:1三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)當(dāng)時,l被C截得的弦長最短,最短弦長為.【解析】(1)求出直線l的定點,進(jìn)而判斷定點和圓C的位置關(guān)系,最后得到答案;(2)當(dāng)圓心C到直線l的距離最大時,弦長最短,進(jìn)而求出m,然后根據(jù)勾股定理求出弦長.【詳解】(1)直線l的方程可化為y+3=2m(x-4),則l過定點P(4,-3),由于42+(-3)2-6×4+12×(-3)+20=-15<0,所以點P在圓內(nèi),故直線l與圓C總相交(2)圓的C方程可化為:(x-3)2+(y+6)2=25,如圖所示,當(dāng)圓心C(3,-6)到直線l的距離最大時,弦AB的長度最短,此時PC⊥l,又,所以直線l的斜率為,則,在直角中,|PC|=,|AC|=5,所以|AB|=.故當(dāng)時,l被C截得的弦長最短,最短弦長為.18、(1)證明見詳解(2)【解析】(1)將線面平行轉(zhuǎn)化為面面平行,由已知易證;(2)延長相交與點F,利用等體積法求點A到平面PCE,然后由可得.【小問1詳解】四邊形ABCD為正方形平面PAD,平面PAD平面PAD同理,,平面PAD又平面,平面平面平面PAD平面平面PAD【小問2詳解】延長相交與點F,因為,所以分別為的中點.記點到平面PCF為d,直線AB與平面PCE所成角為,則.易知,,,,因為平面ABCD,所以,所以因為,所以由得:即,得所以22.19、(1)0(2)f(x)在(0,π)上有且只有一個零點,理由見解析【解析】(1)利用導(dǎo)數(shù)的幾何意義求解;(2)由,可得,令,,,,利用導(dǎo)數(shù)法求解.【小問1詳解】解:,所以k=f′(0)=-a=0,所以a=0;【小問2詳解】由,可得,令,,所以,①當(dāng)時,sinx+cosx≥1,ex>1,所以g′(x)>0,所以g(x)在上單調(diào)遞增,又因為g(0)=0,所以g(x)在上無零點;②當(dāng)時,令,所以h′(x)=2cosxex<0,即h(x)在上單調(diào)遞減,又因為,h(π)=-eπ-1<0,所以存在,,所以g(x)在上單調(diào)遞增,在上單調(diào)遞減,因為,g(π)=-π<0,所以g(x)在上且只有一個零點;綜上所述:f(x)在(0,π)上有且只有一個零點20、(1)(2)【解析】(1)利用正弦定理化簡已知條件,求得,由此求得.(2)利用正弦定理求得,由列方程來求得.【小問1詳解】,由正弦定理得,因為,所以,.【小問2詳解】由(1)知,,由正弦定理:得,,或(舍去),,,所以由得,,21、(1)(2)(3)【解析】(1)由頻率分布直方圖中所有矩形的面積之和為1,可求出答案.(2)根據(jù)平均數(shù)的公式可得到答案.(3)先求出一根棉花纖維長度達(dá)到特等品的概率,然后分恰好有一根和兩根棉花小問1詳解】由解得【小問2詳解】該樣本數(shù)據(jù)的平均數(shù)為:【小問3詳解】由題意一根棉花纖維長度達(dá)到特等品的概率為:兩根棉花中至少有一根棉花纖維長度達(dá)到特等品的概率22、(1)400(2)(3)【解析】(1)根據(jù)分層抽樣的方法,列出關(guān)系式計算即可;(2)根據(jù)分層抽樣的方法,求出抽取的女生人數(shù),進(jìn)而列舉出從樣本中抽取2人的所有情況,可根據(jù)古典概型的概率公式計算即可;(3)求出樣本平均數(shù),進(jìn)而求出與樣本平均數(shù)之差的絕對值不
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年風(fēng)險評估在隧道施工中的研究
- 2026年橋梁結(jié)構(gòu)修復(fù)技術(shù)與耐久性評估
- 財稅干貨知識培訓(xùn)課件
- 骨診課件教學(xué)課件
- 2026年大連理工大學(xué)經(jīng)濟(jì)管理學(xué)院團(tuán)隊專職科研崗位自聘人員招聘備考題庫及一套完整答案詳解
- 2026年右江民族醫(yī)學(xué)院公開招聘教職人員控制數(shù)工作人員10人備考題庫帶答案詳解
- 2026年中糧麥芽(江陰)有限公司招聘備考題庫完整參考答案詳解
- 2026年關(guān)于招聘衢州市柯城區(qū)國有資產(chǎn)經(jīng)營有限責(zé)任公司勞務(wù)外包工作人員備考題庫及參考答案詳解一套
- 2026年東莞證券股份有限公司中山小欖升平中路證券營業(yè)部招聘備考題庫及參考答案詳解
- 2026年上海滬康護(hù)理院有限公司招聘備考題庫帶答案詳解
- (人教A版)選擇性必修一高二數(shù)學(xué)上冊 全冊綜合測試卷-基礎(chǔ)篇(原卷版)
- 導(dǎo)熱油爐安全操作規(guī)程
- 2025購房合同(一次性付款)
- GB/T 46161.1-2025道路車輛氣壓制動系第1部分:管、端面密封外螺紋接頭和螺紋孔
- 云南省茶葉出口競爭力分析及提升對策研究
- 絕緣技術(shù)監(jiān)督培訓(xùn)課件
- 2025秋季學(xué)期國開電大法律事務(wù)專科《刑事訴訟法學(xué)》期末紙質(zhì)考試多項選擇題庫珍藏版
- 東城區(qū)2025-2026學(xué)年九年級第一學(xué)期期末考試物理試題
- 《市場監(jiān)督管理投訴舉報處理辦法》知識培訓(xùn)
- 地震監(jiān)測面試題目及答案
- 12S522混凝土模塊式排水檢查井圖集
評論
0/150
提交評論