版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
湖北省黃石二中2026屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.圓的圓心和半徑分別是()A., B.,C., D.,2.已知函數(shù)的導(dǎo)函數(shù)為,若的圖象如圖所示,則函數(shù)的圖象可能是()A B.C. D.3.從編號(hào)為1~120的商品中利用系統(tǒng)抽樣的方法抽8件進(jìn)行質(zhì)檢,若所抽樣本中含有編號(hào)66的商品,則下列編號(hào)一定被抽到的是()A.111 B.52C.37 D.84.設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是A.y與x具有正的線性相關(guān)關(guān)系B.回歸直線過(guò)樣本點(diǎn)中心(,)C.若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kgD.若該大學(xué)某女生身高為170cm,則可斷定其體重必為58.79kg5.“,”是“方程表示雙曲線”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.在等差數(shù)列中,,,則數(shù)列的公差為()A.1 B.2C.3 D.47.雙曲線的兩個(gè)焦點(diǎn)坐標(biāo)是()A.和 B.和C.和 D.和8.在空間中,“直線與沒有公共點(diǎn)”是“直線與異面”的()A.必要不充分條件 B.充要條件C.充分不必要條件 D.既不充分也不必要條件9.過(guò)點(diǎn)(-2,1)的直線中,被圓x2+y2-2x+4y=0截得的弦最長(zhǎng)的直線的方程是()A.x+y+1=0 B.x+y-1=0C.x-y+1=0 D.x-y-1=010.在正方體中,為棱的中點(diǎn),則異面直線與所成角的正切值為A. B.C. D.11.設(shè)P是拋物線上的一個(gè)動(dòng)點(diǎn),F(xiàn)為拋物線的焦點(diǎn).若,則的最小值為()A. B.C.4 D.512.若拋物線焦點(diǎn)坐標(biāo)為,則的值為A. B.C.8 D.4二、填空題:本題共4小題,每小題5分,共20分。13.不等式的解集是___________.14.如圖,在四棱錐中,平面,底面為矩形,分別為的中點(diǎn),連接,則點(diǎn)到平面的距離為__________.15.與雙曲線有共同的漸近線,并且經(jīng)過(guò)點(diǎn)的雙曲線方程是______16.“直線和直線垂直”的充要條件是______三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)等差數(shù)列前n項(xiàng)和為,且(1)求通項(xiàng)公式;(2)記,求數(shù)列的前n項(xiàng)和18.(12分)在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,求平面ACD1的一個(gè)法向量.19.(12分)已知函數(shù)(1)若在點(diǎn)處的切線與軸平行,求的值;(2)當(dāng)時(shí),求證:;(3)若函數(shù)有兩個(gè)零點(diǎn),求的取值范圍20.(12分)已知拋物線的焦點(diǎn)F到準(zhǔn)線的距離為2(1)求C的方程;(2)已知O為坐標(biāo)原點(diǎn),點(diǎn)P在C上,點(diǎn)Q滿足,求直線斜率最大值.21.(12分)如圖,四棱錐P-ABCD的底面ABCD是菱形,PA⊥AB,PA⊥AD,且E、F分別是AC、PB的中點(diǎn)(1)證明:EF∥平面PCD;(2)求證:平面PBD⊥平面PAC22.(10分)在實(shí)驗(yàn)室中,研究某種動(dòng)物是否患有某種傳染疾病,需要對(duì)其血液進(jìn)行檢驗(yàn).現(xiàn)有份血液樣本,有以下兩種檢驗(yàn)方式:一是逐份檢驗(yàn),則需要檢驗(yàn)n次;二是混合檢驗(yàn),將其中k(且)份血液樣本分別取樣混合在一起檢驗(yàn),如果檢驗(yàn)結(jié)果為陰性,這k份的血液全為陰性,因而這k份血液樣本只要檢驗(yàn)一次就夠了;如果檢驗(yàn)結(jié)果為陽(yáng)性,為了明確這k份究竟哪些為陽(yáng)性,就需要對(duì)它們?cè)俅稳又鸱輽z驗(yàn),那么這k份血液的檢驗(yàn)次數(shù)共為次.假設(shè)在接受檢驗(yàn)的血液樣本中,每份樣本的檢驗(yàn)結(jié)果是陽(yáng)性還是陰性都是獨(dú)立的.且每份樣本是陽(yáng)性結(jié)果的概率為(1)假設(shè)有5份血液樣本,其中只有2份血液樣本為陽(yáng)性,若采用逐份檢驗(yàn)方式,求恰好經(jīng)過(guò)3次檢驗(yàn)就能把陽(yáng)性樣本全部檢測(cè)出來(lái)的概率;(2)假設(shè)有4份血液樣本,現(xiàn)有以下兩種方案:方案一:4個(gè)樣本混合在一起檢驗(yàn);方案二:4個(gè)樣本平均分為兩組,分別混合在一起檢驗(yàn)若檢驗(yàn)次數(shù)的期望值越小,則方案越優(yōu)現(xiàn)將該4份血液樣本進(jìn)行檢驗(yàn),試比較以上兩個(gè)方案中哪個(gè)更優(yōu)?
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】先化為標(biāo)準(zhǔn)方程,再求圓心半徑即可.【詳解】先化為標(biāo)準(zhǔn)方程可得,故圓心為,半徑為.故選:D.2、D【解析】根據(jù)導(dǎo)函數(shù)大于,原函數(shù)單調(diào)遞增;導(dǎo)函數(shù)小于,原函數(shù)單調(diào)遞減;即可得出正確答案.【詳解】由導(dǎo)函數(shù)得圖象可得:時(shí),,所以在單調(diào)遞減,排除選項(xiàng)A、B,當(dāng)時(shí),先正后負(fù),所以在先增后減,因選項(xiàng)C是先減后增再減,故排除選項(xiàng)C,故選:D.3、A【解析】先求出等距抽樣的組距,從而得到被抽到的是,從而求出答案.【詳解】120件商品中抽8件,故,因?yàn)楹芯幪?hào)66的商品被抽到,故其他能被抽到的是,當(dāng)時(shí),,其他三個(gè)選項(xiàng)均不合要求,故選:A4、D【解析】根據(jù)y與x的線性回歸方程為y=0.85x﹣85.71,則=0.85>0,y與x具有正的線性相關(guān)關(guān)系,A正確;回歸直線過(guò)樣本點(diǎn)的中心(),B正確;該大學(xué)某女生身高增加1cm,預(yù)測(cè)其體重約增加0.85kg,C正確;該大學(xué)某女生身高為170cm,預(yù)測(cè)其體重約為0.85×170﹣85.71=58.79kg,D錯(cuò)誤故選D5、A【解析】根據(jù)雙曲線的方程以及充分條件和必要條件的定義進(jìn)行判斷即可【詳解】由,可知方程表示焦點(diǎn)在軸上的雙曲線;反之,若表示雙曲線,則,即,或,所以“,”是“方程表示雙曲線”的充分不必要條件故選:A6、B【解析】將已知條件轉(zhuǎn)化為的形式,由此求得.【詳解】在等差數(shù)列中,設(shè)公差為d,由,,得,解得.故選:B7、C【解析】由雙曲線標(biāo)準(zhǔn)方程可得到焦點(diǎn)所在軸及半焦距的長(zhǎng),進(jìn)而得到兩個(gè)焦點(diǎn)坐標(biāo).【詳解】雙曲線中,,則又雙曲線焦點(diǎn)在y軸,故雙曲線的兩個(gè)焦點(diǎn)坐標(biāo)是和故選:C8、A【解析】由于在空間中,若直線與沒有公共點(diǎn),則直線與平行或異面,再根據(jù)充分、必要條件的概念判斷,即可得到結(jié)果.【詳解】在空間中,若直線與沒有公共點(diǎn),則直線與平行或異面.故“直線與沒有公共點(diǎn)”是“直線與異面”的必要不充分條件.故選:A.9、A【解析】當(dāng)直線被圓截得的最弦長(zhǎng)最大時(shí),直線要經(jīng)過(guò)圓心,即圓心在直線上,然后根據(jù)兩點(diǎn)式方程可得所求【詳解】由題意得,圓的方程為,∴圓心坐標(biāo)為∵直線被圓截得的弦長(zhǎng)最大,∴直線過(guò)圓心,又直線過(guò)點(diǎn)(-2,1),所以所求直線的方程為,即故選:A10、C【解析】利用正方體中,,將問(wèn)題轉(zhuǎn)化為求共面直線與所成角的正切值,在中進(jìn)行計(jì)算即可.【詳解】在正方體中,,所以異面直線與所成角為,設(shè)正方體邊長(zhǎng)為,則由為棱的中點(diǎn),可得,所以,則.故選C.【點(diǎn)睛】求異面直線所成角主要有以下兩種方法:(1)幾何法:①平移兩直線中的一條或兩條,到一個(gè)平面中;②利用邊角關(guān)系,找到(或構(gòu)造)所求角所在的三角形;③求出三邊或三邊比例關(guān)系,用余弦定理求角;(2)向量法:①求兩直線的方向向量;②求兩向量夾角的余弦;③因?yàn)橹本€夾角為銳角,所以②對(duì)應(yīng)的余弦取絕對(duì)值即為直線所成角的余弦值.11、C【解析】作出圖形,過(guò)點(diǎn)作拋物線準(zhǔn)線的垂線,由拋物線的定義得,從而得出,再由、、三點(diǎn)共線時(shí),取最小值得解.【詳解】,所以在拋物線的內(nèi)部,過(guò)點(diǎn)作拋物線準(zhǔn)線的垂線,由拋物線的定義得,,當(dāng)且僅當(dāng)、、三點(diǎn)共線時(shí),等號(hào)成立,因此,的最小值為.故選:C.12、A【解析】先把拋物線方程整理成標(biāo)準(zhǔn)方程,進(jìn)而根據(jù)拋物線的焦點(diǎn)坐標(biāo),可得的值.【詳解】拋物線的標(biāo)準(zhǔn)方程為,因?yàn)閽佄锞€的焦點(diǎn)坐標(biāo)為,所以,所以,故選A.【點(diǎn)睛】該題考查的是有關(guān)利用拋物線的焦點(diǎn)坐標(biāo)求拋物線的方程的問(wèn)題,涉及到的知識(shí)點(diǎn)有拋物線的簡(jiǎn)單幾何性質(zhì),屬于簡(jiǎn)單題目.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】將分式不等式等價(jià)轉(zhuǎn)化為不等式組,求解即得.【詳解】原不等式等價(jià)于,解得,故答案為:.14、【解析】利用轉(zhuǎn)化法,根據(jù)線面平行的性質(zhì),結(jié)合三棱錐的體積等積性進(jìn)行求解即可.【詳解】設(shè)是的中點(diǎn),連接,因?yàn)槭堑闹悬c(diǎn),所以,因?yàn)槠矫?,平面,所以平面,因此點(diǎn)到平面的距離等于點(diǎn)到平面的距離,設(shè)為,因?yàn)槠矫?,所以,,于是有,底面為矩形,所以有,,因?yàn)槠矫?,所以,于是有:,由余弦定理可知:cos∠PEC=所以,因此,,因?yàn)?,所以,故答案為?5、【解析】設(shè)雙曲線的方程為,將點(diǎn)代入方程可求的值,從而可得結(jié)果【詳解】設(shè)與雙曲線有共同的漸近線的雙曲線的方程為,該雙曲線經(jīng)過(guò)點(diǎn),所求的雙曲線方程為:,整理得故答案為【點(diǎn)睛】本題考查雙曲線的方程與簡(jiǎn)單性質(zhì),意在考查靈活應(yīng)用所學(xué)知識(shí)解答問(wèn)題的能力,屬于中檔題.與共漸近線的雙曲線方程可設(shè)為,只需根據(jù)已知條件求出即可.16、或【解析】利用直線一般式方程表示垂直的方法求解.【詳解】因?yàn)橹本€和直線垂直,所以,解得或;故答案為:或.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解析】(1)設(shè)等差數(shù)列的公差為,根據(jù)已知條件求,利用等差數(shù)列的通項(xiàng)公式可求得數(shù)列的通項(xiàng)公式.(2)求得,利用裂項(xiàng)相消法即可求得.【小問(wèn)1詳解】設(shè)等差數(shù)列的公差為,由,解得,所以,故數(shù)列的通項(xiàng)公式;【小問(wèn)2詳解】由(1)得:,所以,所以.18、【解析】建立空間直角坐標(biāo)系,由向量法求法向量即可.【詳解】如圖,建立空間直角坐標(biāo)系,則設(shè)平面ACD1的法向量.,又為平面ACD1的一個(gè)法向量,化簡(jiǎn)得令x=1,得y=z=1.平面ACD1的一個(gè)法向量.【點(diǎn)睛】本題主要考查了求平面的法向量,屬于中檔題.19、(1);(2)證明見解析;(3).【解析】(1)由可求得實(shí)數(shù)的值;(2)利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,求得,即可證得結(jié)論成立;(3)分析可知在上存在唯一的極值點(diǎn),且,可得出,構(gòu)造函數(shù),分析函數(shù)的單調(diào)性,求得的取值范圍,再構(gòu)造,分析函數(shù)的單調(diào)性,求出的范圍,即可得出的取值范圍.【小問(wèn)1詳解】解:因?yàn)榈亩x域?yàn)椋?由題意可得,解得.【小問(wèn)2詳解】證明:當(dāng)時(shí),,該函數(shù)的定義域?yàn)椋?,其中,則,故函數(shù)在上遞減,因?yàn)椋?,所以,存在,使得,則,且,當(dāng)時(shí),,函數(shù)單調(diào)遞增,當(dāng)時(shí),,函數(shù)單調(diào)遞減,所以,,所以,當(dāng)時(shí),.【小問(wèn)3詳解】解:函數(shù)的定義域?yàn)椋?令,其中,則,所以,函數(shù)單調(diào)遞減,因?yàn)楹瘮?shù)有兩個(gè)零點(diǎn),等價(jià)于函數(shù)在上存在唯一的極值點(diǎn),且為極大值點(diǎn),且,即,所以,,令,其中,則,故函數(shù)在上單調(diào)遞增,又因?yàn)椋桑傻?,?gòu)造函數(shù),其中,則,所以,函數(shù)在上單調(diào)遞增,故,因此,實(shí)數(shù)的取值范圍是.【點(diǎn)睛】方法點(diǎn)睛:利用導(dǎo)數(shù)證明不等式問(wèn)題,方法如下:(1)直接構(gòu)造函數(shù)法:證明不等式(或)轉(zhuǎn)化為證明(或),進(jìn)而構(gòu)造輔助函數(shù);(2)適當(dāng)放縮構(gòu)造法:一是根據(jù)已知條件適當(dāng)放縮;二是利用常見放縮結(jié)論;(3)構(gòu)造“形似”函數(shù),稍作變形再構(gòu)造,對(duì)原不等式同解變形,根據(jù)相似結(jié)構(gòu)構(gòu)造輔助函數(shù).20、(1);(2)最大值為.【解析】(1)由拋物線焦點(diǎn)與準(zhǔn)線的距離即可得解;(2)設(shè),由平面向量的知識(shí)可得,進(jìn)而可得,再由斜率公式及基本不等式即可得解.【詳解】(1)拋物線的焦點(diǎn),準(zhǔn)線方程為,由題意,該拋物線焦點(diǎn)到準(zhǔn)線的距離為,所以該拋物線的方程為;(2)[方法一]:軌跡方程+基本不等式法設(shè),則,所以,由在拋物線上可得,即,所以直線的斜率,當(dāng)時(shí),;當(dāng)時(shí),,當(dāng)時(shí),因?yàn)?,此時(shí),當(dāng)且僅當(dāng),即時(shí),等號(hào)成立;當(dāng)時(shí),;綜上,直線斜率的最大值為.[方法二]:【最優(yōu)解】軌跡方程+數(shù)形結(jié)合法同方法一得到點(diǎn)Q的軌跡方程為設(shè)直線的方程為,則當(dāng)直線與拋物線相切時(shí),其斜率k取到最值.聯(lián)立得,其判別式,解得,所以直線斜率的最大值為[方法三]:軌跡方程+換元求最值法同方法一得點(diǎn)Q的軌跡方程為設(shè)直線的斜率為k,則令,則的對(duì)稱軸為,所以.故直線斜率的最大值為[方法四]參數(shù)+基本不等式法由題可設(shè)因,所以于是,所以則直線的斜率為當(dāng)且僅當(dāng),即,時(shí)等號(hào)成立,所以直線斜率的最大值為【整體點(diǎn)評(píng)】方法一根據(jù)向量關(guān)系,利用代點(diǎn)法求得Q的軌跡方程,得到直線OQ的斜率關(guān)于的表達(dá)式,然后利用分類討論,結(jié)合基本不等式求得最大值;方法二同方法一得到點(diǎn)Q的軌跡方程,然后利用數(shù)形結(jié)合法,利用判別式求得直線OQ的斜率的最大值,為最優(yōu)解;方法三同方法一求得Q的軌跡方程,得到直線的斜率k的平方關(guān)于的表達(dá)式,利用換元方法轉(zhuǎn)化為二次函數(shù)求得最大值,進(jìn)而得到直線斜率的最大值;方法四利用參數(shù)法,由題可設(shè),求得x,y關(guān)于的參數(shù)表達(dá)式,得到直線的斜率關(guān)于的表達(dá)式,結(jié)合使用基本不等式,求得直線斜率的最大值.21、(1)證明見解析;(2)證明見解析.【解析】(1)連結(jié),證明EF∥PD即可;(2)證明BD⊥平面PAC即可【小問(wèn)1詳解】連結(jié),則是的中點(diǎn),又是的中點(diǎn),,又平面,面,平面【小問(wèn)2詳解】∵PA⊥AB,PA⊥AD,AB∩AD=A,AB、AD平面ABCD,∴PA⊥平面ABCD,∵BD平面ABCD,∴P
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年綠色低碳算力基礎(chǔ)設(shè)施項(xiàng)目公司成立分析報(bào)告
- 2026年車載生物特征識(shí)別項(xiàng)目商業(yè)計(jì)劃書
- 軋鋼精整工崗前基礎(chǔ)模擬考核試卷含答案
- 梳理縫編非織造布制作工標(biāo)準(zhǔn)化模擬考核試卷含答案
- 船舶貨運(yùn)員崗后考核試卷含答案
- 濕法水刺非織造布制作工操作技能水平考核試卷含答案
- 實(shí)驗(yàn)動(dòng)物飼養(yǎng)員安全檢查測(cè)試考核試卷含答案
- 暗室?guī)熣\(chéng)信品質(zhì)測(cè)試考核試卷含答案
- 消毒員沖突解決知識(shí)考核試卷含答案
- 瘋牛病介紹教學(xué)課件
- 2025-2030中國(guó)生物煉制行業(yè)市場(chǎng)現(xiàn)狀供需分析及投資評(píng)估規(guī)劃分析研究報(bào)告
- 透析患者營(yíng)養(yǎng)不良課件
- 國(guó)家開放大學(xué)《營(yíng)銷策劃案例分析》形考任務(wù)5答案
- 220kv安全培訓(xùn)課件
- 計(jì)量測(cè)量基礎(chǔ)知識(shí)培訓(xùn)課件
- 2025年云南省中考物理真題(含答案)
- 基于杜邦分析的零售企業(yè)盈利能力研究-以來(lái)伊份為例
- 腦機(jī)協(xié)同學(xué)習(xí)-洞察及研究
- 《內(nèi)蒙古自治區(qū)中小學(xué)(中等職業(yè)學(xué)校)課程教學(xué)管理規(guī)范(試行)》
- 第三方安全評(píng)估管理辦法
- 環(huán)境工程污水處理技術(shù)題庫(kù)
評(píng)論
0/150
提交評(píng)論