版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
浙江省9+1高中聯(lián)盟2026屆高二上數(shù)學(xué)期末調(diào)研模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知一個圓錐體積為,任取該圓錐的兩條母線a,b,若a,b所成角的最大值為,則該圓錐的側(cè)面積為()A. B.C. D.2.已知為定義在R上的偶函數(shù)函數(shù),且在單調(diào)遞減.若關(guān)于的不等式在上恒成立,則實數(shù)m的取值范圍是()A. B.C. D.3.已知橢圓:的左、右焦點分別為,,點P是橢圓上的動點,,,則的最小值為()A. B.C D.4.函數(shù)的定義域為開區(qū)間,導(dǎo)函數(shù)在內(nèi)的圖像如圖所示,則函數(shù)在開區(qū)間內(nèi)的極大值點有()A.1個 B.2個C.3個 D.4個5.△ABC兩個頂點坐標(biāo)A(-4,0),B(4,0),它的周長是18,則頂點C的軌跡方程是()A. B.(y≠0)C. D.6.圓的圓心坐標(biāo)和半徑分別為()A.和 B.和C.和 D.和7.已知是橢圓與雙曲線的公共焦點,P是它們的一個公共點,且,線段的垂直平分線過,若橢圓的離心率為,雙曲線的離心率為,則的最小值為()A. B.3C.6 D.8.函數(shù)的極大值點為()A. B.C. D.不存在9.從集合中任取兩個不同元素,則這兩個元素相差的概率為()A. B.C. D.10.新冠肺炎疫情的發(fā)生,我國的三大產(chǎn)業(yè)均受到不同程度的影響,其中第三產(chǎn)業(yè)中的各個行業(yè)都面臨著很大的營收壓力.2020年7月國家統(tǒng)計局發(fā)布了我國上半年國內(nèi)經(jīng)濟(jì)數(shù)據(jù),如圖所示,圖1為國內(nèi)三大產(chǎn)業(yè)比重,圖2為第三產(chǎn)業(yè)中各行業(yè)比重下列關(guān)于我國上半年經(jīng)濟(jì)數(shù)據(jù)的說法正確的是()A.第一產(chǎn)業(yè)的生產(chǎn)總值與第三產(chǎn)業(yè)中“其他服務(wù)業(yè)”的生產(chǎn)總值基本持平B.第一產(chǎn)業(yè)的生產(chǎn)總值超過第三產(chǎn)業(yè)中“金融業(yè)”的生產(chǎn)總值C.若“住宿和餐飲業(yè)”生產(chǎn)總值為7500億元,則“房地產(chǎn)”生產(chǎn)總值為22500億元D.若“金融業(yè)”生產(chǎn)總值為41040億元,則第二產(chǎn)業(yè)生產(chǎn)總值為166500億元11.已知直線與圓交于兩點,過分別作的垂線與軸交于兩點,則A.2 B.3C. D.412.設(shè)橢圓C:的左、右焦點分別為、,P是C上的點,⊥,∠=,則C的離心率為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知線段AB的長度為3,其兩個端點A,B分別在x軸、y軸上滑動,點M滿足.則點M的軌跡方程為______14.直線的傾斜角的取值范圍是______.15.若函數(shù)處取極值,則___________16.若直線與直線平行,則直線與之間的距離為_____三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某高校在今年的自主招生考試成績中隨機(jī)抽取100名考生的筆試成績,分為5組制出頻率分布表如圖所示.組號分組頻數(shù)頻率150052350.35330b4cd5100.1(1)求b,c,d的值;(2)該校決定在成績較好的3、4、5組用分層抽樣抽取6名學(xué)生進(jìn)行面試,則每組應(yīng)各抽多少名學(xué)生?(3)在(2)的前提下,從抽到6名學(xué)生中再隨機(jī)抽取2名被甲考官面試,求這2名學(xué)生來自同一組的概率.18.(12分)已知拋物線上一點到拋物線焦點的距離為,點關(guān)于坐標(biāo)原點對稱,過點作軸的垂線,為垂足,直線與拋物線交于兩點.(1)求拋物線的方程;(2)設(shè)直線與軸交點分別為,求的值;(3)若,求.19.(12分)已知函數(shù).(1)若,討論函數(shù)的單調(diào)性;(2)當(dāng)時,求在區(qū)間上的最小值和最大值.20.(12分)已知橢圓的左右焦點分別為,,經(jīng)過左焦點的直線與橢圓交于A,B兩點(異于左右頂點)(1)求△的周長;(2)求橢圓E上的點到直線距離的最大值21.(12分)求滿足下列條件的曲線的方程:(1)離心率為,長軸長為6的橢圓的標(biāo)準(zhǔn)方程(2)與橢圓有相同焦點,且經(jīng)過點的雙曲線的標(biāo)準(zhǔn)方程22.(10分)已知點為橢圓C的右焦點,P為橢圓上一點,且(O為坐標(biāo)原點),.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)經(jīng)過點的直線l與橢圓C交于A,B兩點,求弦的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】設(shè)圓錐的母線長為R,底面半徑長為r,由題可知圓錐的軸截面是等邊三角形,根據(jù)體積公式計算可得,利用扇形的面積公式計算即可求得結(jié)果.【詳解】如圖,設(shè)圓錐的母線長為R,底面半徑長為r,由題可知圓錐的軸截面是等邊三角形,所以,圓錐的體積,解得,所以該圓錐的側(cè)面積為.故選:B2、C【解析】由條件利用函數(shù)的奇偶性和單調(diào)性,可得對恒成立,轉(zhuǎn)化為且對恒成立.求得相應(yīng)的最大值和最小值,從而求得的范圍【詳解】定義在上的函數(shù)為偶函數(shù),且在上遞減,在上單調(diào)遞增,若不等式在上恒成立,即在上恒成立在上恒成立,即在上恒成立,即且在上恒成立令,則,,,,在上遞增,上遞減,令,當(dāng)時,,在上遞減,故可知,解得,所以實數(shù)m的取值范圍是故選:C3、A【解析】由橢圓的定義可得;利用基本不等式,若,則,當(dāng)且僅當(dāng)時取等號.【詳解】根據(jù)橢圓的定義可知,,即,因為,,所以,當(dāng)且僅當(dāng),時等號成立.故選:A4、B【解析】利用極值點的定義求解.【詳解】由導(dǎo)函數(shù)的圖象知:函數(shù)在內(nèi),與x軸有四個交點:第一個點處導(dǎo)數(shù)左正右負(fù),第二個點處導(dǎo)數(shù)左負(fù)右正,第三個點處導(dǎo)數(shù)左正右正,第四個點處導(dǎo)數(shù)左正右負(fù),所以函數(shù)在開區(qū)間內(nèi)的極大值點有2個,故選:B5、D【解析】根據(jù)三角形的周長得出,再由橢圓的定義得頂點C的軌跡為以A,B為焦點的橢圓,去掉A,B,C共線的情況,可求得頂點C的軌跡方程.【詳解】因為,所以,所以頂點C的軌跡為以A,B為焦點的橢圓,去掉A,B,C共線的情況,即,所以頂點C的軌跡方程是,故選:D.【點睛】本題考查橢圓的定義,由定義求得動點的軌跡方程,求解時,注意去掉不滿足的點,屬于基礎(chǔ)題.6、C【解析】利用圓的一般方程的圓心和半徑公式,即得解【詳解】可化為,由圓心為,半徑,易知圓心的坐標(biāo)為,半徑為.故選:C7、C【解析】利用橢圓和雙曲線的性質(zhì),用橢圓雙曲線的焦距長軸長表示,再利用均值不等式得到答案【詳解】設(shè)橢圓長軸,雙曲線實軸,由題意可知:,又,,兩式相減,可得:,,.,,當(dāng)且僅當(dāng)時取等號,的最小值為6,故選:C【點睛】本題考查了橢圓雙曲線的性質(zhì),用橢圓雙曲線的焦距長軸長表示是解題的關(guān)鍵,意在考查學(xué)生的計算能力8、B【解析】求導(dǎo),令導(dǎo)數(shù)等于0,然后判斷導(dǎo)數(shù)符號可得,或者根據(jù)對勾函數(shù)圖象可解.【詳解】令,得,因為時,,時,,所以時有極大值;當(dāng)時,,時,,所以時有極小值.故選:B9、B【解析】一一列出所有基本事件,然后數(shù)出基本事件數(shù)和有利事件數(shù),代入古典概型的概率計算公式,即可得解.【詳解】解:從集合中任取兩個不同元素的取法有、、、、、共6種,其中滿足兩個元素相差的取法有、、共3種.故這兩個元素相差的概率為.故選:B.10、D【解析】根據(jù)扇形圖及柱形圖中的各產(chǎn)業(yè)與各行業(yè)所占比重,得到第三產(chǎn)業(yè)中“其他服務(wù)業(yè)”及“金融業(yè)”的生產(chǎn)總值占總生產(chǎn)總值的比重,進(jìn)而比較出AB選項,利用“住宿和餐飲業(yè)”生產(chǎn)總值和“房地產(chǎn)”生產(chǎn)總值的比值,求出“房地產(chǎn)”生產(chǎn)總值,判斷出C選項,利用第三產(chǎn)業(yè)中“金融業(yè)”的生產(chǎn)總值與第二產(chǎn)業(yè)的生產(chǎn)總值比值,求出第二產(chǎn)業(yè)生產(chǎn)總值,判斷D選項.【詳解】A選項,第三產(chǎn)業(yè)中“其他服務(wù)業(yè)”的生產(chǎn)總值占總生產(chǎn)總值的,因為,所以第三產(chǎn)業(yè)中“其他服務(wù)業(yè)”的生產(chǎn)總值明顯高于第一產(chǎn)業(yè)的生產(chǎn)總值,A錯誤;B選項,第三產(chǎn)業(yè)中“金融業(yè)”的生產(chǎn)總值占總生產(chǎn)總值的,因為,故第一產(chǎn)業(yè)的生產(chǎn)總值少于第三產(chǎn)業(yè)中“金融業(yè)”的生產(chǎn)總值,B錯誤;“住宿和餐飲業(yè)”生產(chǎn)總值和“房地產(chǎn)”生產(chǎn)總值的比值為,若“住宿和餐飲業(yè)”生產(chǎn)總值為7500億元,則“房地產(chǎn)”生產(chǎn)總值為億元,故C錯誤;第三產(chǎn)業(yè)中“金融業(yè)”的生產(chǎn)總值占總生產(chǎn)總值的,與第二產(chǎn)業(yè)的生產(chǎn)總值比值為,若“金融業(yè)”生產(chǎn)總值為41040億元,則第二產(chǎn)業(yè)生產(chǎn)總值為166500億元,D正確.故選:D11、D【解析】由題意,圓心到直線的距離,∴,∵直線∴直線的傾斜角為,∵過分別作的垂線與軸交于兩點,∴,故選D.12、D【解析】詳解】由題意可設(shè)|PF2|=m,結(jié)合條件可知|PF1|=2m,|F1F2|=m,故離心率e=選D.點睛:解決橢圓和雙曲線的離心率的求值及范圍問題其關(guān)鍵就是確立一個關(guān)于的方程或不等式,再根據(jù)的關(guān)系消掉得到的關(guān)系式,而建立關(guān)于的方程或不等式,要充分利用橢圓和雙曲線的幾何性質(zhì)、點的坐標(biāo)的范圍等.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè)出動點,根據(jù)已知條件得到關(guān)于的方程.【詳解】設(shè),由,有,得,所以,由得:,所以點的軌跡的方程是.故答案為:14、【解析】先求出直線的斜率取值范圍,再根據(jù)斜率與傾斜角的關(guān)系,即可求出【詳解】可化為:,所以,由于,結(jié)合函數(shù)在上的圖象,可知故答案為:【點睛】本題主要考查斜率與傾斜角的關(guān)系的應(yīng)用,以及直線的一般式化斜截式,屬于基礎(chǔ)題15、3【解析】=.因為f(x)在1處取極值,所以1是f′(x)=0的根,將x=1代入得a=3.故答案為3.考點:利用導(dǎo)數(shù)研究函數(shù)的極值16、【解析】由直線平行求參數(shù)m,再利用平行直線的距離公式求與之間的距離.【詳解】由題設(shè),,即,所以,,所以直線與之間的距離為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),,(2)第三組應(yīng)抽人,第四組應(yīng)抽人,第五組應(yīng)抽人(3)【解析】(1)根據(jù)頻率分布表的數(shù)據(jù)求出b,c,d的值;(2)三個組共有60人,從而利用分層抽樣抽樣方法抽取6名學(xué)生第三組應(yīng)抽3人,第四組應(yīng)抽2人,第五組應(yīng)抽1人;(3)記第三組抽出的3人分別為,第四組抽出的2人分別為,第五組抽出的1人為,利用列舉法結(jié)合概率公式得出答案.【小問1詳解】由題意得,,【小問2詳解】三個組共有60人,所以第三組應(yīng)抽人,第四組應(yīng)抽人,第五組應(yīng)抽人.【小問3詳解】記第三組抽出的3人分別為,第四組抽出的2人分別為,第五組抽出的1人為,從這6人中隨機(jī)抽取2人,基本事件包含,共15個基本事件.其中2人來自同一組的情況有,共4種.所以,2人來自同一組的概率為.18、(1);(2);(3).【解析】(1)運用拋物線的定義進(jìn)行求解即可;(2)設(shè)出直線的方程,與拋物線的方程聯(lián)立,可求得點和的縱坐標(biāo),結(jié)合直線點斜式方程、兩點間距離公式進(jìn)行求解即可;(3)利用弦長公式求得,由兩點間距離公式求得和,再解方程即可.【小問1詳解】拋物線的準(zhǔn)線方程為:,因為點到拋物線焦點的距離為,所以有;小問2詳解】由題意知,,,設(shè),則,,,,所以直線的方程為,聯(lián)立,消去得,,解得,設(shè),,,,不妨取,,直線的斜率為,其方程為,令,則,同理可得,所以,而,所以;【小問3詳解】,其中,,,因為,所以,化簡得,解得(舍負(fù)),即,所以【點睛】關(guān)鍵點睛:運用拋物線的定義、弦長公式進(jìn)行求解是解題的關(guān)鍵.19、(1)在和上單調(diào)遞增,在上單調(diào)遞減.(2)答案見解析.【解析】(1)求解導(dǎo)函數(shù),并求出的兩根,得和的解集,從而得函數(shù)單調(diào)性;(2)由(1)得函數(shù)的單調(diào)性,從而得最小值,計算,再分類討論與兩種情況下的最大值.【小問1詳解】函數(shù)定義域為,,時,或,因為,所以,時,或,時,,所以函數(shù)在和上單調(diào)遞增,在上單調(diào)遞減.【小問2詳解】因為,由(1)知,在上單調(diào)遞減,在上單調(diào)遞增,所以最小值為,又因為,當(dāng)時,,此時最小值為,最大值為;當(dāng)時,,此時最小值為,最大值為.【點睛】導(dǎo)數(shù)是研究函數(shù)的單調(diào)性、極值(最值)最有效的工具,而函數(shù)是高中數(shù)學(xué)中重要的知識點,對導(dǎo)數(shù)的應(yīng)用的考查主要從以下幾個角度進(jìn)行:(1)考查導(dǎo)數(shù)的幾何意義,往往與解析幾何、微積分相聯(lián)系.(2)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,判斷單調(diào)性;已知單調(diào)性,求參數(shù).(3)利用導(dǎo)數(shù)求函數(shù)的最值(極值),解決生活中的優(yōu)化問題.(4)考查數(shù)形結(jié)合思想的應(yīng)用20、(1);(2).【解析】(1)利用橢圓的定義求△的周長;(2)設(shè)直線與橢圓相切,聯(lián)立方程求參數(shù)m,與之間的距離的最大值,即為橢圓E上的點到直線l距離的最大值.【小問1詳解】已知橢圓E方程為,所以,△的周長為,其中,所以△的周長為.【小問2詳解】設(shè)直線與直線l平行且與橢圓相切,則,得,即,令,解得,所以,與之間的距離,即橢圓E上的點到直線l距離的最大值為21、(1)或;(2)【解析】(1)根據(jù)題意,由橢圓的幾何性質(zhì)可得a、c的值,計算可得b的值,討論橢圓焦點的位置,求出橢圓的標(biāo)準(zhǔn)方程,即可得答案;(2)根據(jù)題意,求出橢圓的焦點坐標(biāo),進(jìn)而可以設(shè)雙曲線的方程為,分析可得和,解可得a、b的值,即可得答案【詳解】解:(1)根據(jù)題意,要求橢圓的長軸長為6,離心率為,則,,解可得:,;則,若橢圓的焦點在x軸上,其方程為,若橢圓的焦點在y軸上,其方程為,綜合可得:橢圓的標(biāo)準(zhǔn)方程為或;(2)根據(jù)題意,橢圓的焦點為和,故要求雙曲線的方程為,且,則有,又由雙曲線經(jīng)過經(jīng)過點,則有,,聯(lián)立可得:,故雙曲線方程為:【點睛】本題考查橢圓、雙曲線的標(biāo)準(zhǔn)方程的求法,涉及橢圓、雙曲線的幾何性質(zhì),屬于基礎(chǔ)題22、(1)(2)【解析】(1)利用橢圓定義求得橢圓的即可解決;(2)經(jīng)過點的直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年貴州省遵義市輔警招聘試卷帶答案
- 車隊安全培訓(xùn)常識總結(jié)報告課件
- 機(jī)廠有限責(zé)任公司績效考核細(xì)則
- 市場經(jīng)濟(jì)視域下區(qū)域高等教育專業(yè)設(shè)置與調(diào)控的協(xié)同發(fā)展研究
- 自動化施工機(jī)械配置方案
- 施工技術(shù)交底流程
- 幕墻氣候適應(yīng)性研究
- 管道施工中安全檢查記錄方案
- 廠區(qū)余熱循環(huán)利用建設(shè)項目施工方案
- 混凝土施工現(xiàn)場物料管理
- 東莞初三上冊期末數(shù)學(xué)試卷
- 鸚鵡熱治療講課件
- 低碳-零碳產(chǎn)業(yè)園清潔能源供暖技術(shù)規(guī)范DB15-T 3994-2025
- 小學(xué)的思政教育
- 學(xué)術(shù)道德與學(xué)術(shù)規(guī)范嚴(yán)守誠信底線共建優(yōu)良學(xué)風(fēng)培訓(xùn)課件
- 門診預(yù)約掛號流程
- 光伏防火培訓(xùn)課件
- 2025中學(xué)生國防教育
- 電視節(jié)目編導(dǎo)與制作(全套課件147P)
- 《海外并購》課件
- 醫(yī)學(xué)預(yù)防科普
評論
0/150
提交評論