版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
福建省廈門外國語中學(xué)2026屆高二上數(shù)學(xué)期末聯(lián)考試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知直線與直線,若,則()A.6 B.C.2 D.2.《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,第九章“勾股”,講述了“勾股定理”及一些應(yīng)用,直角三角形的兩直角邊與斜邊的長分別稱“勾”“股”“弦”,且“”.設(shè)分別是雙曲線的左、右焦點(diǎn),直線交雙曲線左、右兩支于兩點(diǎn),若恰好是的“勾”“股”,則此雙曲線的離心率為()A. B.C.2 D.3.如圖,兩個(gè)半徑為R的相交大圓,分別內(nèi)含一個(gè)半徑為r的同心小圓,且同心小圓均與另一個(gè)大圓外切.已知時(shí),在兩相交大圓的區(qū)域內(nèi)隨機(jī)取一點(diǎn),則該點(diǎn)取自兩大圓公共部分的概率為()A. B.C. D.4.已知直線的斜率為1,直線的傾斜角比直線的傾斜角小15°,則直線的斜率為()A.-1 B.C. D.15.已知、,直線,,且,則的最小值為()A. B.C. D.6.?dāng)?shù)學(xué)家歐拉在1765年發(fā)現(xiàn),任意三角形的外心、重心、垂心位于同一條直線上,這條直線稱為歐拉線.已知的頂點(diǎn),,若其歐拉線的方程為,則頂點(diǎn)的坐標(biāo)為()A. B.C. D.7.已知等差數(shù)列的前項(xiàng)和為,若,則()A B.C. D.8.如圖,樣本和分別取自兩個(gè)不同的總體,它們的平均數(shù)分別為和,標(biāo)準(zhǔn)差分別為和,則()AB.C.D.9.若橢圓的弦恰好被點(diǎn)平分,則所在的直線方程為()A. B.C. D.10.德國數(shù)學(xué)家高斯是近代數(shù)學(xué)奠基者之一,有“數(shù)學(xué)王子”之稱,在歷史上有很大的影響.他幼年時(shí)就表現(xiàn)出超人的數(shù)學(xué)天才,10歲時(shí),他在進(jìn)行的求和運(yùn)算時(shí),就提出了倒序相加法的原理,該原理基于所給數(shù)據(jù)前后對(duì)應(yīng)項(xiàng)的和呈現(xiàn)一定的規(guī)律生成,因此,此方法也稱之為高斯算法.已知數(shù)列,則()A.96 B.97C.98 D.9911.有一組樣本數(shù)據(jù)、、、,由這組數(shù)據(jù)得到新樣本數(shù)據(jù)、、、,其中,為非零常數(shù),則()A.兩組樣本數(shù)據(jù)的樣本平均數(shù)相同 B.兩組樣本數(shù)據(jù)的樣本標(biāo)準(zhǔn)差相同C.兩組樣本數(shù)據(jù)的樣本中位數(shù)相同 D.兩組樣本數(shù)據(jù)的樣本眾數(shù)相同12.已知圓和圓恰有三條公共切線,則的最小值為()A.6 B.36C.10 D.二、填空題:本題共4小題,每小題5分,共20分。13.直線過拋物線的焦點(diǎn)F,且與C交于A,B兩點(diǎn),則___________.14.已知向量,,若,則實(shí)數(shù)m的值是___________.15.如圖,已知橢圓C1和雙曲線C2交于P1、P2、P3、P4四個(gè)點(diǎn),F(xiàn)1和F2分別是C1的左右焦點(diǎn),也是C2的左右焦點(diǎn),并且六邊形是正六邊形.若橢圓C1的方程為,則雙曲線方程為______.16.曲線在點(diǎn)處的切線方程為_____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),其中為實(shí)數(shù).(1)若函數(shù)的圖像在處的切線與直線平行,求函數(shù)的解析式;(2)若,求在上的最大值和最小值.18.(12分)已知函數(shù)(1)填寫函數(shù)的相關(guān)性質(zhì);定義域值域零點(diǎn)極值點(diǎn)單調(diào)性性質(zhì)(2)通過(1)繪制出函數(shù)的圖像,并討論方程解的個(gè)數(shù)19.(12分)如圖所示等腰梯形ABCD中,,,,點(diǎn)E為CD的中點(diǎn),沿AE將折起,使得點(diǎn)D到達(dá)F位置.(1)當(dāng)時(shí),求證:平面AFC;(2)當(dāng)時(shí),求二面角的余弦值.20.(12分)已知圓,P(2,0),M點(diǎn)是圓Q上任意一點(diǎn),線段PM的垂直平分線交半徑MQ于點(diǎn)C,當(dāng)M點(diǎn)在圓上運(yùn)動(dòng)時(shí),點(diǎn)C的軌跡為曲線C(1)求曲線C方程;(2)已知直線l:x=8,A、B是曲線C上的兩點(diǎn),且不在x軸上,,垂足為,,垂足為,若D(3,0),且的面積是△ABD面積的5倍,求△ABD面積的最大值21.(12分)如圖,在三棱錐中,平面平面,且,(1)求證:;(2)求直線與所成角的余弦值22.(10分)已知橢圓的離心率為,橢圓過點(diǎn).(1)求橢圓C的方程;(2)過點(diǎn)的直線交橢圓于M、N兩點(diǎn),已知直線MA,NA分別交直線于點(diǎn)P,Q,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)兩直線垂直的充要條件得到方程,解得即可;【詳解】解:因?yàn)橹本€與直線,且,所以,解得;故選:A2、A【解析】根據(jù)雙曲線的定義及直角三角形斜邊的中線定理,再結(jié)合雙曲線的離心率公式即可求解.【詳解】如圖所示由題意可知,根據(jù)雙曲線的定義知,是的中點(diǎn)且.在中,是的中點(diǎn),所以,因?yàn)橹本€的斜率為,所以,所以.所以是等邊三角形,.在中,.由雙曲線的定義,得,所以雙曲線的離心率為.故選:A.3、C【解析】設(shè)D為線段AB的中點(diǎn),求得,在中,可得.進(jìn)而求得兩大圓公共部分的面積為:,利用幾何概型計(jì)算即可得出結(jié)果.【詳解】如圖,設(shè)D為線段AB的中點(diǎn),,在中,.兩大圓公共部分的面積為:,則該點(diǎn)取自兩大圓公共部分的概率為.故選:C.4、C【解析】根據(jù)直線的斜率求出其傾斜角可求得答案.【詳解】設(shè)直線的傾斜角為,所以,因?yàn)?,所以,因?yàn)橹本€的傾斜角比直線的傾斜角小15°,所以直線的傾斜角為,則直線的斜率為.故選:C5、D【解析】先由,可得,變形得,所以,化簡后利用基本不等式求解即可【詳解】因?yàn)?、,直線,,且,所以,即,所以,所以,所以,當(dāng)且僅當(dāng),即時(shí),取等號(hào),所以的最小值為,故選:D6、A【解析】設(shè),計(jì)算出重心坐標(biāo)后代入歐拉方程,再求出外心坐標(biāo),根據(jù)外心的性質(zhì)列出關(guān)于的方程,最后聯(lián)立解方程即可.【詳解】設(shè),由重心坐標(biāo)公式得,三角形的重心為,,代入歐拉線方程得:,整理得:①的中點(diǎn)為,,的中垂線方程為,即聯(lián)立,解得的外心為則,整理得:②聯(lián)立①②得:,或,當(dāng),時(shí),重合,舍去頂點(diǎn)的坐標(biāo)是故選:A【點(diǎn)睛】關(guān)鍵點(diǎn)睛:解決本題的關(guān)鍵一是求出外心,二是根據(jù)外心的性質(zhì)列方程.7、B【解析】利用等差數(shù)列的性質(zhì)可求得的值,再結(jié)合等差數(shù)列求和公式以及等差中項(xiàng)的性質(zhì)可求得的值.【詳解】由等差數(shù)列的性質(zhì)可得,則,故.故選:B.8、B【解析】直接根據(jù)圖表得到答案.【詳解】根據(jù)圖表:樣本數(shù)據(jù)均小于等于10,樣本數(shù)據(jù)均大于等于10,故;樣本數(shù)據(jù)波動(dòng)大于樣本數(shù)據(jù),故.故選:B.9、D【解析】判斷點(diǎn)M與橢圓的位置關(guān)系,再借助點(diǎn)差法求出直線AB的斜率即可計(jì)算作答.【詳解】顯然點(diǎn)橢圓內(nèi),設(shè)點(diǎn),依題意,,兩式相減得:,而弦恰好被點(diǎn)平分,即,則直線AB的斜率,直線AB:,即,所以所在的直線方程為.故選:D10、C【解析】令,利用倒序相加原理計(jì)算即可得出結(jié)果.【詳解】令,,兩式相加得:,∴,故選:C11、B【解析】利用平均數(shù)公式可判斷A選項(xiàng);利用標(biāo)準(zhǔn)差公式可判斷B選項(xiàng);利用中位數(shù)的定義可判斷C選項(xiàng);利用眾數(shù)的定義可判斷D選項(xiàng).【詳解】對(duì)于A選項(xiàng),設(shè)數(shù)據(jù)、、、的平均數(shù)為,數(shù)據(jù)、、、的平均數(shù)為,則,A錯(cuò);對(duì)于B選項(xiàng),設(shè)數(shù)據(jù)、、、的標(biāo)準(zhǔn)差為,數(shù)據(jù)、、、的標(biāo)準(zhǔn)差為,,B對(duì);對(duì)于C選項(xiàng),設(shè)數(shù)據(jù)、、、中位數(shù)為,數(shù)據(jù)、、、的中位數(shù)為,不妨設(shè),則,若為奇數(shù),則,;若為偶數(shù),則,.綜上,,C錯(cuò);對(duì)于D選項(xiàng),設(shè)數(shù)據(jù)、、、的眾數(shù)為,則數(shù)據(jù)、、、的眾數(shù)為,D錯(cuò).故選:B.12、B【解析】由公切線條數(shù)得兩圓外切,由此可得的關(guān)系,從而點(diǎn)在以原點(diǎn)為圓心,4為半徑的圓上,記,由求得的最小值,平方后即得結(jié)論【詳解】圓標(biāo)準(zhǔn)方程為,,半徑為,圓標(biāo)準(zhǔn)方程為,,半徑為,兩圓有三條公切線,則兩圓外切,所以,即,點(diǎn)在以原點(diǎn)為圓心,4為半徑的圓上,記,,所以,所以的最小值為故選:B二、填空題:本題共4小題,每小題5分,共20分。13、8【解析】由題意,求出,然后聯(lián)立直線與拋物線方程,由韋達(dá)定理及即可求解.【詳解】解:因?yàn)閽佄锞€的焦點(diǎn)坐標(biāo)為,又直線過拋物線的焦點(diǎn)F,所以,拋物線的方程為,由,得,所以,所以.故答案為:8.14、【解析】結(jié)合已知條件和空間向量的數(shù)量積的坐標(biāo)公式即可求解.【詳解】因?yàn)?,所以,解?故答案為:.15、【解析】先根據(jù)橢圓的方程求得焦點(diǎn)坐標(biāo),然后根據(jù)為正六邊形求得點(diǎn)的坐標(biāo),即點(diǎn)在雙曲線上,然后解出方程即可【詳解】設(shè)雙曲線的方程為:根據(jù)橢圓的方程可得:又為正六邊形,則點(diǎn)的坐標(biāo)為:則點(diǎn)在雙曲線上,可得:又解得:故答案為:16、【解析】求導(dǎo),求出切線斜率,進(jìn)而寫出切線方程.【詳解】,則,故切斜方程為:,即故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2),【解析】(1)根據(jù)平行關(guān)系得到切線斜率,進(jìn)而得到導(dǎo)函數(shù)在處的函數(shù)值,列出方程,求出,進(jìn)而得到函數(shù)解析式;(2)先由求出,再利用導(dǎo)函數(shù)求單調(diào)性和最值.【小問1詳解】,.由題意得:,解得:.,【小問2詳解】,則,解得,,,當(dāng),解得:,即函數(shù)在單調(diào)遞減,當(dāng),解得:或,即函數(shù)分別在,遞增.又,,,,,.18、(1)詳見解析(2)詳見解析【解析】(1)利用導(dǎo)數(shù)判斷函數(shù)的性質(zhì);(2)由函數(shù)性質(zhì)繪制函數(shù)的圖象,并將方程轉(zhuǎn)化為,即轉(zhuǎn)化為與的交點(diǎn)個(gè)數(shù).【小問1詳解】函數(shù)的定義域是,,當(dāng)時(shí),,函數(shù)單調(diào)遞增,當(dāng)時(shí),,函數(shù)單調(diào)遞減,所以當(dāng)時(shí),函數(shù)取得極大值,同時(shí)也是函數(shù)的最大值,,當(dāng)時(shí),,當(dāng)時(shí),,函數(shù)的值域是,,得,所以函數(shù)的零點(diǎn)是,定義域值域零點(diǎn)極值點(diǎn)單調(diào)性性質(zhì)單調(diào)遞增區(qū)間,單調(diào)遞減區(qū)間【小問2詳解】函數(shù)的圖象如圖,,即,方程解的個(gè)數(shù),即與的交點(diǎn)個(gè)數(shù),當(dāng)時(shí),無交點(diǎn),即方程無實(shí)數(shù)根;當(dāng)或時(shí),有一個(gè)交點(diǎn),即方程有一個(gè)實(shí)數(shù)根;當(dāng)時(shí),有兩個(gè)交點(diǎn),即方程有兩個(gè)實(shí)數(shù)根.19、(1)證明見解析(2)【解析】(1)結(jié)合線面垂直的判定定理來證得結(jié)論成立.(2)建立空間直角坐標(biāo)系,利用向量法來求得二面角的大小.【小問1詳解】設(shè),由于四邊形是等腰梯形,是的中點(diǎn),,所以,所以四邊形是平行四邊形,由于,所以四邊形是菱形,所以,由于,是的中點(diǎn),所以,由于,所以平面.【小問2詳解】由于,所以三角形、三角形、三角形是等邊三角形,設(shè)是的中點(diǎn),設(shè),則,所以,所以,由于兩兩垂直.以為空間坐標(biāo)原點(diǎn)建立如圖所示空間直角坐標(biāo)系,,,平面的法向量為,設(shè)平面法向量為,則,故可設(shè),由圖可知,二面角為鈍角,設(shè)二面角為,,則.20、(1)(2)【解析】(1)由定義法求出曲線C的方程;(2)先判斷出直線AB過定點(diǎn)H(2,0)或H(4,0).當(dāng)AB過定點(diǎn)H(4,0),求出最大;當(dāng)H(2,0)時(shí),可設(shè)直線AB:.用“設(shè)而不求法”表示出,不妨設(shè)(),利用函數(shù)的單調(diào)性求出△ABD面積的最大值.【小問1詳解】因?yàn)榫€段PM的垂直平分線交半徑MQ于點(diǎn)C,所以,所以,符合橢圓的定義,所以點(diǎn)C的軌跡為以P、Q為焦點(diǎn)的橢圓,其中,所以,所以曲線C的方程為.【小問2詳解】不妨設(shè)直線l:x=8交x軸于G(8,0),直線AB交x軸于H(h,0),則,.因?yàn)?,,,所?又因?yàn)榈拿娣e是△ABD面積的5倍,所以.因?yàn)镚(8,0),D(3,0),所以,所以H(2,0)或H(4,0).當(dāng)H(4,0)時(shí),則H與A(或H與B)重合,不妨設(shè)H與A重合,此時(shí),,要使△ABD面積最大,只需B在短軸頂點(diǎn)時(shí),=2最大,所以最大;當(dāng)H(2,0)時(shí),要想構(gòu)成三角形ABD,直線AB的斜率不為0,可設(shè)直線AB:.設(shè),則,消去x可得:,所以,,,所以.不妨設(shè)(),則,由對(duì)勾函數(shù)的性質(zhì)可知,在上單調(diào)遞減,所以當(dāng)t=4時(shí),,此時(shí)最大綜上所述,△ABD面積的最大值為.【點(diǎn)睛】(1)“設(shè)而不求”是一種在解析幾何中常見的解題方法,可以解決直線與二次曲線相交的問題;(2)解析幾何中最值計(jì)算方法有兩類:①幾何法:利用幾何圖形求最值;②代數(shù)法:表示為函數(shù),利用函數(shù)求最值.21、(1)證明見解析;(2).【解析】(1)過點(diǎn)作交的延長線于點(diǎn),連接,由,,證出平面,即可證出.(2)以為原點(diǎn),的方向分別為軸正方向,建立空間直角坐標(biāo)系,寫出相應(yīng)點(diǎn)的坐標(biāo),利用,即可得到答案.【小問1詳解】過點(diǎn)作交的延長線于點(diǎn),連接,因?yàn)?,所以,又因?yàn)?,所以,所以,即?因?yàn)?,所以平面,因?yàn)槠矫?,所以【小?詳解】因?yàn)槠矫嫫矫?,平面平面,所以平面,以為原點(diǎn),的方向分別為軸正方向,建立如圖所示的空間直角坐標(biāo)系,則,可得,因?yàn)椋灾本€與所成角的余弦值為22、(1)(2)1【解析】(1)由題意得到關(guān)于a,b的方程組,求解方程組即可確定橢圓方程;(2)首先聯(lián)立直線與橢圓的方程,然后由直線MA,NA的方程確定點(diǎn)P,Q的縱坐標(biāo),將線段長度的比值轉(zhuǎn)化為縱坐標(biāo)比值的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 車間級(jí)安全教育內(nèi)容課件
- 銀行員工獎(jiǎng)懲管理制度
- 車間生產(chǎn)安全員培訓(xùn)內(nèi)容課件
- 車間工人安全帶培訓(xùn)材料課件
- 車間安全操作規(guī)范培訓(xùn)課件
- 車間安全培訓(xùn)需求調(diào)查表課件
- 車間安全培訓(xùn)總結(jié)課件
- 市場原因停工申請(qǐng)報(bào)告(3篇)
- 車間安全員管理培訓(xùn)課件
- 2026年足療機(jī)項(xiàng)目投資計(jì)劃書
- 風(fēng)箏制作教育課件
- 棄渣場使用規(guī)劃方案
- 滑坡穩(wěn)定性評(píng)價(jià)
- TTSSP 045-2023 油茶果機(jī)械化爆蒲及油茶籽干制加工技術(shù)規(guī)程
- JCT 871-2023 鍍銀玻璃鏡 (正式版)
- 2024年廣東深圳市龍崗區(qū)南灣街道綜合網(wǎng)格員招聘筆試沖刺題(帶答案解析)
- 《兒科護(hù)理學(xué)》課件-兒童健康評(píng)估特點(diǎn)
- 臨床研究數(shù)據(jù)清洗與質(zhì)量控制
- 基礎(chǔ)拓?fù)鋵W(xué)講義答案尤承業(yè)
- 1種植業(yè)及養(yǎng)殖業(yè)賬務(wù)處理及科目設(shè)置
- 淺析幼小銜接中大班幼兒時(shí)間觀念的培養(yǎng)對(duì)策 論文
評(píng)論
0/150
提交評(píng)論