2026屆廣東省化州市高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第1頁
2026屆廣東省化州市高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第2頁
2026屆廣東省化州市高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第3頁
2026屆廣東省化州市高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第4頁
2026屆廣東省化州市高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2026屆廣東省化州市高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.將5名北京冬奧會志愿者分配到花樣滑冰、短道速滑、冰球和冰壺4個項目進(jìn)行培訓(xùn),每名志愿者只分配到1個項目,每個項目至少分配1名志愿者,則不同的分配方案共有()A.60種 B.120種C.240種 D.480種2.阿基米德曾說過:“給我一個支點,我就能撬動地球”.他在做數(shù)學(xué)研究時,有一個有趣的問題:一個邊長為2的正方形內(nèi)部挖了一個內(nèi)切圓,現(xiàn)在以該內(nèi)切圓的圓心且平行于正方形的一邊的直線為軸旋轉(zhuǎn)一周形成幾何體,則該旋轉(zhuǎn)體的體積為()A. B.C. D.3.已知定義在R上的函數(shù)滿足,且有,則的解集為()A. B.C. D.4.“”是“圓與軸相切”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件5.橢圓的左右兩焦點分別為,,過垂直于x軸的直線交C于A,B兩點,,則橢圓C的離心率是()A. B.C. D.6.已知,,若,則實數(shù)的值為()A. B.C. D.27.若,則下列等式一定成立的是()A. B.C. D.8.直線的一個法向量為()A. B.C. D.9.已知函數(shù)的圖象過點,令.記數(shù)列的前n項和為,則()A. B.C. D.10.已知A(-1,1,2),B(1,0,-1),設(shè)D在直線AB上,且,設(shè)C(λ,+λ,1+λ),若CD⊥AB,則λ的值為()A. B.-C. D.11.已知向量,且,則()A. B.C. D.12.下列直線中,與直線垂直的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)有下列命題:①當(dāng),時,不等式恒成立;②函數(shù)在上的最小值為2;③函數(shù)在上的最大值為;④若,,且,則的最小值為其中真命題為________________.(填寫所有真命題的序號)14.已知球的半徑為4,圓與圓為該球的兩個小圓,為圓與圓的公共弦,,若,則兩圓圓心的距離___________15.已知三棱錐的四個頂點在球的球面上,,是邊長為正三角形,分別是的中點,,則球的體積為_________________16.若拋物線:上的一點到它的焦點的距離為3,則__.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的上下兩個焦點分別為,,過點與y軸垂直的直線交橢圓C于M,N兩點,△的面積為,橢圓C的離心率為(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)已知O為坐標(biāo)原點,直線與y軸交于點P,與橢圓C交于A,B兩個不同的點,若存在實數(shù),使得,求m的取值范圍18.(12分)已知圓心為的圓,滿足下列條件:圓心在軸上,與直線相切,且被軸截得的弦長為,圓的面積小于(1)求圓的標(biāo)準(zhǔn)方程;(2)設(shè)過點的直線與圓交于不同的兩點、,以、為鄰邊作平行四邊形.是否存在這樣的直線,使得直線與恰好平行?如果存在,求出的方程,如果不存在,請說明理由19.(12分)已知四邊形是空間直角坐標(biāo)系中的一個平行四邊形,且,,(1)求點的坐標(biāo);(2)求平行四邊形的面積20.(12分)在等差數(shù)列中,(1)求數(shù)列的通項公式;(2)設(shè)數(shù)列是首項為1,公比為2的等比數(shù)列,求數(shù)列的前項和.21.(12分)如圖,在長方體中,底面是邊長為1的正方形,側(cè)棱長為2,且動點P在線段AC上運動(1)若Q為的中點,求點Q到平面的距離;(2)設(shè)直線與平面所成角為,求的取值范圍22.(10分)已知圓:與x軸負(fù)半軸交于點A,過A的直線交拋物線于B,C兩點,且.(1)證明:點C的橫坐標(biāo)為定值;(2)若點C在圓內(nèi),且過點C與垂直的直線與圓交于D,E兩點,求四邊形ADBE的面積的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】先確定有一個項目中分配2名志愿者,其余各項目中分配1名志愿者,然后利用組合,排列,乘法原理求得.【詳解】根據(jù)題意,有一個項目中分配2名志愿者,其余各項目中分配1名志愿者,可以先從5名志愿者中任選2人,組成一個小組,有種選法;然后連同其余三人,看成四個元素,四個項目看成四個不同的位置,四個不同的元素在四個不同的位置的排列方法數(shù)有4!種,根據(jù)乘法原理,完成這件事,共有種不同的分配方案,故選:C.【點睛】本題考查排列組合的應(yīng)用問題,屬基礎(chǔ)題,關(guān)鍵是首先確定人數(shù)的分配情況,然后利用先選后排思想求解.2、B【解析】根據(jù)題意,結(jié)合圓柱和球的體積公式進(jìn)行求解即可.【詳解】由題意可知:該旋轉(zhuǎn)體的體積等于底面半徑為,高為的圓柱的體積減去半徑為的球的體積,即,故選:B3、A【解析】構(gòu)造,應(yīng)用導(dǎo)數(shù)及已知條件判斷的單調(diào)性,而題設(shè)不等式等價于即可得解.【詳解】設(shè),則,∴R上單調(diào)遞增.又,則.∵等價于,即,∴,即所求不等式的解集為.故選:A.4、A【解析】根據(jù)充分不必要條件的定義和圓心到軸的距離求出可得答案.【詳解】時,圓的圓心坐標(biāo)為,半徑為2,此時圓與軸相切;當(dāng)圓與軸相切時,因為圓的半徑為2,所以圓心到軸的距離為,所以,“”是“圓與軸相切”的充分不必要條件故選:A5、C【解析】由題可得為等邊三角形,可得,即得.【詳解】∵過垂直于x軸的直線交橢圓C于A,B兩點,,∴為等邊三角形,由代入,可得,∴,所以,即,又,解得.故選:C.6、D【解析】由,然后根據(jù)向量數(shù)量積的坐標(biāo)運算即可求解.【詳解】解:因,,所以,因為,所以,即,解得,故選:D.7、D【解析】利用復(fù)數(shù)除法運算和復(fù)數(shù)相等可用表示出,進(jìn)而得到之間關(guān)系.【詳解】,,,則.故選:D.8、B【解析】直線化為,求出直線的方向向量,因為法向量與方向向量垂直,逐項驗證可得答案.【詳解】直線的方向向量為,化為,直線的方向向量為,因為法向量與方向向量垂直,設(shè)法向量為,所以,由于,A錯誤;,故B正確;,故C錯誤;,故D錯誤;故選:B.9、D【解析】由已知條件推導(dǎo)出,.由此利用裂項求和法能求出【詳解】解:由,可得,解得,則.∴,故選:【點睛】本題考查了函數(shù)的性質(zhì)、數(shù)列的“裂項求和”,考查了推理能力與計算能力,屬于中檔題10、B【解析】設(shè)D(x,y,z),根據(jù)求出D(,,0),再根據(jù)CD⊥AB得·=2(-λ)+λ-3(-1-λ)=0,解方程即得λ的值.【詳解】設(shè)D(x,y,z),則=(x+1,y-1,z-2),=(2,-1,-3),=(1-x,-y,-1-z),∵=2,∴∴∴D(,,0),=(-λ,-λ,-1-λ),∵⊥,∴·=2(-λ)+λ-3(-1-λ)=0,∴λ=-故選:B【點睛】(1)本題主要考查向量的線性運算和空間向量垂直的坐標(biāo)表示,意在考查學(xué)生對這些知識的掌握水平和分析推理能力.(2).11、A【解析】利用空間向量共線的坐標(biāo)表示即可求解.【詳解】由題意可得,解得,所以.故選:A12、C【解析】,,若,則,項,符合條件,故選二、填空題:本題共4小題,每小題5分,共20分。13、①③④【解析】①直接利用基本不等式判斷即可;②直接利用基本不等式以及等號成立的條件判斷即可;③分子、分母同除,利用基本不等式即可判斷;④設(shè),,利用指、對互化以及基本不等式即可判斷.【詳解】由于,,故恒成立,當(dāng)且僅當(dāng)時取等號,所以①正確;,當(dāng)且僅當(dāng),即時取等號,由于,所以②不正確;因為,所以,當(dāng)且僅當(dāng)時取等號,而,即函數(shù)的最大值為,所以③正確;設(shè),,則,,,,,所以,當(dāng)且僅當(dāng),時取等號,故的最小值為,所以④正確.故答案為:①③④【點睛】易錯點睛:利用基本不等式求最值時,要注意其必須滿足的三個條件:(1)“一正二定三相等”“一正”就是各項必須為正數(shù);(2)“二定”就是要求和的最小值,必須把構(gòu)成和的二項之積轉(zhuǎn)化成定值;要求積的最大值,則必須把構(gòu)成積的因式的和轉(zhuǎn)化成定值;(3)“三相等”是利用基本不等式求最值時,必須驗證等號成立的條件,若不能取等號則這個定值就不是所求的最值,這也是最容易發(fā)生錯誤的地方.14、【解析】欲求兩圓圓心的距離,將它放在與球心組成的三角形中,只要求出球心角即可,通過球的性質(zhì)構(gòu)成的直角三角形即可解得【詳解】∵,球半徑為4,∴小圓的半徑為,∵小圓中弦長,作垂直于,∴,同理可得,在直角三角形中,∵,,∴,∴,∴故答案為:.15、【解析】由已知設(shè)出,,,分別在中和在中運用余弦定理表示,得到關(guān)于x與y的關(guān)系式,再在中運用勾股定理得到關(guān)于x與y的又一關(guān)系式,聯(lián)立可解得x,y,從而分析出正三棱錐是,,兩兩垂直的正三棱錐,所以三棱錐的外接球就是以為棱的正方體的外接球,再通過正方體的外接球的直徑等于正方體的體對角線的長求出球的半徑,再求出球的體積.【詳解】在中,設(shè),,,,,因為點,點分別是,的中點,所以,,在中,,在中,,整理得,因為是邊長為的正三角形,所以,又因為,所以,由,解得,所以又因為是邊長為的正三角形,所以,所以,所以,,兩兩垂直,則球為以為棱的正方體的外接球,則外接球直徑為,所以球的體積為,故答案為.【點睛】本題主要考查空間幾何體的外接球的體積,破解關(guān)鍵在于熟悉正三棱錐的結(jié)構(gòu)特征,運用解三角形的正弦定理和余弦定理得出三棱錐的棱的關(guān)系,繼而分析出正三棱錐的外接球是以正三棱錐中互相垂直的三條棱為棱的正方體的外接球,利用正方體的外接球的直徑等于正方體的體對角線的長求解更方便快捷,屬于中檔題16、【解析】通過拋物線的定義列式求解【詳解】根據(jù)拋物線的定義知,所以.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)或或.【解析】(1)根據(jù)已知條件,求得的方程組,解得,即可求得橢圓的方程;(2)對的取值進(jìn)行分類討論,當(dāng)時,根據(jù)三點共線求得,聯(lián)立直線方程和橢圓方程,利用韋達(dá)定理,結(jié)合直線交橢圓兩點,代值計算即可求得結(jié)果.【小問1詳解】對橢圓,令,故可得,則,故,則,又,,故可得,則橢圓的方程為:.【小問2詳解】直線與y軸交于點P,故可得的坐標(biāo)為,當(dāng)時,則,由橢圓的對稱性可知:,故滿足題意;當(dāng)時,因為三點共線,若存在實數(shù),使得,即,則,故可得.又直線與橢圓交于兩點,故聯(lián)立直線方程,與橢圓方程,可得:,則,即;設(shè)坐標(biāo)為,則,又,即,故可得:,即,也即,代入韋達(dá)定理整理得:,即,當(dāng)時,上式不成立,故可得,又,則,整理得:,解得,即或.綜上所述:的取值范圍是或或.【點睛】本題考察橢圓方程的求解,以及橢圓中范圍問題的處理;解決本題的關(guān)鍵一是要求得的取值,二是充分利用韋達(dá)定理以及直線和曲線相交,則聯(lián)立方程組后得到的一元二次方程的,屬綜合中檔題.18、(1);(2)不存在,理由見解析.【解析】(1)設(shè)圓心,設(shè)圓的半徑為,可得出,根據(jù)已知條件可得出關(guān)于實數(shù)的方程,求出的值,可得出的值,進(jìn)而可得出圓的標(biāo)準(zhǔn)方程;(2)分析可知直線的斜率存在,可設(shè)直線的方程為,設(shè)點、,將直線的方程與圓的方程聯(lián)立,由可求得的取值范圍,列出韋達(dá)定理,分析可得,可求得點的坐標(biāo),由已知可得出,求出的值,檢驗即可得出結(jié)論.【小問1詳解】解:設(shè)圓心,設(shè)圓的半徑為,則,由題意可得,由勾股定理可得,則,由題意可得,解得,則,因此,圓的標(biāo)準(zhǔn)方程為.【小問2詳解】解:若直線的斜率不存在,此時直線與軸重合,則、、三點共線,不合乎題意.所以,直線的斜率存在,可設(shè)直線的方程為,設(shè)點、,聯(lián)立,可得,,解得或,由韋達(dá)定理可得,,則,因為四邊形為平行四邊形,則,因為,則,則,解得,因為或,因此,不存直線,使得直線與恰好平行.19、(1);(2)【解析】(1)由題設(shè)可得,結(jié)合向量的共線坐標(biāo)表示求的坐標(biāo);(2)向量的坐標(biāo)運算求邊長,由余弦定理求,進(jìn)而求其正弦值,再應(yīng)用三角形面積公式求面積.【小問1詳解】由題設(shè),,令,則,∴,可得,故.【小問2詳解】由(1),,,則,又,則,∴平行四邊形的面積.20、(1)(2)【解析】(1)根據(jù)等差數(shù)列條件列方程,即可求通項公式;(2)先由等比數(shù)列通項公式求出,解得,分組求和即可.【小問1詳解】設(shè)等差數(shù)列的公差為,則,∴,由,∴,∴數(shù)列的通項公式為.【小問2詳解】∵數(shù)列是首項為1,公比為2的等比數(shù)列,∴,即,∴,∴.21、(1)1(2)【解析】(1)以AB,AD,為x,y,z軸正向建立直角坐標(biāo)系,利用空間向量法求出平面的法向量,結(jié)合點到平面的距離的向量求法計算即可;(2)設(shè)點,,進(jìn)而得出的坐標(biāo),利用向量的數(shù)量積即可列出線面角正弦值的表達(dá)式,結(jié)合二次函數(shù)的性質(zhì)即可得出結(jié)果.【小問1詳解】由題意,分別以AB,AD,為x,y,z軸正向建立直角坐標(biāo)系,于是,,,,,設(shè)平面法向量所以,解得,,令得,,設(shè)點Q到平面的距離為d,【小問2詳解】由(1)可知,平面的法向量,由P點在線段AC上運動可設(shè)點,于是,,所以,的取值范圍是22、(1)證明見解析(2)【解析】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論