版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2026屆廣東省廣州市仲元中學(xué)高一上數(shù)學(xué)期末經(jīng)典模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知是定義在上的奇函數(shù)且單調(diào)遞增,,則的取值范圍是()A. B.C. D.2.已知函數(shù)是定義在上的偶函數(shù),且在區(qū)間上單調(diào)遞增.若實數(shù)滿足,則的最大值是A.1 B.C. D.3.已知函數(shù)在區(qū)間上的值域為,對任意實數(shù)都有,則實數(shù)的取值范圍是()A. B.C. D.4.如圖,邊長為的正方形是一個水平放置的平面圖形的直觀圖,則圖形的面積是A. B.C. D.5.將函數(shù)fx的圖象向右平移φφ>0個單位長度,得到函數(shù)gx=sinx+π6的圖象.A.π6 B.C.2π3 D.6.已知奇函數(shù)fx在R上是增函數(shù),若a=-flog215,b=fA.a<b<c B.b<a<cC.c<b<a D.c<a<b7.下列函數(shù)是偶函數(shù)的是()A. B.C. D.8.函數(shù)的圖像的一條對稱軸是()A. B.C. D.9.已知四面體ABCD中,E,F(xiàn)分別是AC,BD的中點,若AB=6,CD=8,EF=5,則AB與CD所成角的度數(shù)為A.30° B.45°C.60° D.90°10.已知,則()A. B.1C. D.2二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)是定義在R上的奇函數(shù),當(dāng)時,2,則在R上的解析式為________.12.已知函數(shù),為偶函數(shù),則______13.若函數(shù)在上單調(diào)遞增,則的取值范圍是__________14.若“”是“”的必要不充分條件,則實數(shù)的取值范圍為___________.15.已知直線:,直線:,若,則__________16.若,則實數(shù)的值為______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知向量,,且.(1)的值;(2)若,,且,求的值18.已知函數(shù)f(x)=x2﹣2x+1+a在區(qū)間[1,2]上有最小值﹣1(1)求實數(shù)a的值;(2)若關(guān)于x的方程f(log2x)+1﹣2klog2x=0在[2,4]上有解,求實數(shù)k的取值范圍;(3)若對任意的x1,x2∈(1,2],任意的p∈[﹣1,1],都有|f(x1)﹣f(x2)|≤m2﹣2mp﹣2成立,求實數(shù)m的取值范圍.(附:函數(shù)g(t)=t在(0,1)單調(diào)遞減,在(1,+∞)單調(diào)遞增.)19.某籃球隊在本賽季已結(jié)束的8場比賽中,隊員甲得分統(tǒng)計的莖葉圖如下:(1)求甲在比賽中得分的平均數(shù)和方差;(2)從甲比賽得分在20分以下6場比賽中隨機抽取2場進行失誤分析,求抽到2場都不超過平均數(shù)的概率20.已知圓經(jīng)過兩點,且圓心在直線上.(1)求圓的標(biāo)準(zhǔn)方程;(2)若直線過點,且被圓截得的弦長為,求直線的方程.21.已知函數(shù)(1)試判斷函數(shù)的奇偶性并證明;
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】根據(jù)函數(shù)的奇偶性,把不等式轉(zhuǎn)化為,再結(jié)合函數(shù)的單調(diào)性,列出不等式組,即可求解.【詳解】由題意,函數(shù)是定義在上的奇函數(shù),所以,則不等式,可得,又因為單調(diào)遞增,所以,解得,故選:.【點睛】求解函數(shù)不等式的方法:1、解函數(shù)不等式的依據(jù)是函數(shù)的單調(diào)性的定義,具體步驟:①將函數(shù)不等式轉(zhuǎn)化為的形式;②根據(jù)函數(shù)的單調(diào)性去掉對應(yīng)法則“”轉(zhuǎn)化為形如:“”或“”的常規(guī)不等式,從而得解.2、利用函數(shù)的圖象研究不等式,當(dāng)不等式問題不能用代數(shù)法求解但其與函數(shù)有關(guān)時,常將不等式問題轉(zhuǎn)化為兩函數(shù)的圖象上、下關(guān)系問題,從而利用數(shù)形結(jié)合求解.2、D【解析】根據(jù)題意,函數(shù)f(x)是定義在R上的偶函數(shù),則=,又由f(x)區(qū)間(﹣∞,0)上單調(diào)遞增,則f(x)在(0,+∞)上遞減,則f(32a﹣1)?f(32a﹣1)?32a﹣1<?32a﹣1,則有2a﹣1,解可得a,即的最大值是,故選:D.3、D【解析】根據(jù)關(guān)于對稱,討論與的關(guān)系,結(jié)合其區(qū)間單調(diào)性及對應(yīng)值域求的范圍.【詳解】由題設(shè),,易知:關(guān)于對稱,又恒成立,當(dāng)時,,則,可得;當(dāng)時,,則,可得;當(dāng),即時,,則,即,可得;當(dāng),即時,,則,即,可得;綜上,.故選:D.【點睛】關(guān)鍵點點睛:利用分段函數(shù)的性質(zhì),討論其對稱軸與給定區(qū)間的位置關(guān)系,結(jié)合對應(yīng)值域及求參數(shù)范圍.4、D【解析】根據(jù)直觀圖畫出原圖可得答案.【詳解】由直觀圖畫出原圖,如圖,因為,所以,,則圖形的面積是.故選:D5、C【解析】根據(jù)正弦型函數(shù)圖象變換的性質(zhì),結(jié)合零點的定義和正弦型函數(shù)的性質(zhì)進行求解即可.【詳解】因為函數(shù)fx的圖象向右平移φφ>0個單位長度,得到函數(shù)gx=sinx+π6的圖象,所以函數(shù)因為x=0是函數(shù)Fx所以F0=f0所以sinφ+π6=1解得:φ=2kπ(k∈Z),或φ=2kπ+2π3(k∈Z)當(dāng)φ=2kπ(k∈Z)時,因為φ>0,所以φ的最小值是2π,當(dāng)φ=2kπ+2π3(k∈Z)時,因為φ>0,所以φ綜上所述φ的最小值是2π3故選:C6、C【解析】由題意:a=f-且:log2據(jù)此:log2結(jié)合函數(shù)的單調(diào)性有:flog即a>b>c,c<b<a.本題選擇C選項.【考點】指數(shù)、對數(shù)、函數(shù)的單調(diào)性【名師點睛】比較大小是高考常見題,指數(shù)式、對數(shù)式的比較大小要結(jié)合指數(shù)函數(shù)、對數(shù)函數(shù),借助指數(shù)函數(shù)和對數(shù)函數(shù)的圖象,利用函數(shù)的單調(diào)性進行比較大小,特別是靈活利用函數(shù)的奇偶性和單調(diào)性數(shù)形結(jié)合不僅能比較大小,還可以解不等式.7、D【解析】利用偶函數(shù)的性質(zhì)對每個選項判斷得出結(jié)果【詳解】A選項:函數(shù)定義域為,且,,故函數(shù)既不是奇函數(shù)也不是偶函數(shù),A選項錯誤B選項:函數(shù)定義域為,且,,故函數(shù)既不是奇函數(shù)也不是偶函數(shù)C選項:函數(shù)定義域為,,故函數(shù)為奇函數(shù)D選項:函數(shù)定義域為,,故函數(shù)是偶函數(shù)故選D【點睛】本題考查函數(shù)奇偶性的定義,在證明函數(shù)奇偶性時需注意函數(shù)的定義域;還需掌握:奇函數(shù)加減奇函數(shù)為奇函數(shù);偶函數(shù)加減偶函數(shù)為偶函數(shù);奇函數(shù)加減偶函數(shù)為非奇非偶函數(shù);奇函數(shù)乘以奇函數(shù)為偶函數(shù);奇函數(shù)乘以偶函數(shù)為奇函數(shù);偶函數(shù)乘以偶函數(shù)為偶函數(shù)8、C【解析】對稱軸穿過曲線的最高點或最低點,把代入后得到,因而對稱軸為,選.9、D【解析】取BC的中點P,連接PE,PF,則∠FPE(或補角)是AB與CD所成的角,利用勾股定理可求該角為直角.【詳解】如圖,取BC的中點P,連接PE,PF,則PF//CD,∠FPE(或補角)是AB與CD所成的角,∵AB=6,CD=8,∴PF=4,PE=3,而EF=5,所以PF2+P故選:D.【點睛】本題考查異面直線所成的角,此類問題一般需要通過平移構(gòu)建平面角,再利用解三角形的方法求解.10、D【解析】根據(jù)指數(shù)和對數(shù)的關(guān)系,將指數(shù)式化為對數(shù)式,再根據(jù)換底公式及對數(shù)的運算法則計算可得;【詳解】解:,,,,故選:D二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由是定義域在上的奇函數(shù),根據(jù)奇函數(shù)的性質(zhì),可推得的解析式.【詳解】當(dāng)時,2,即,設(shè),則,,又為奇函數(shù),,所以在R上的解析式為.故答案為:.12、4【解析】利用二次函數(shù)為偶函數(shù)的性質(zhì)得一次項系數(shù)為0,定義域關(guān)于原點對稱,即可求得的值.【詳解】由題意得:解得:故答案為:.【點睛】本題考查二次函數(shù)的性質(zhì),考查邏輯推理能力和運算求解能力,求解時注意隱含條件的挖掘.13、【解析】由題意根據(jù)函數(shù)在區(qū)間上為增函數(shù)及分段函數(shù)的特征,可求得的取值范圍【詳解】∵函數(shù)在上單調(diào)遞增,∴函數(shù)在區(qū)間上為增函數(shù),∴,解得,∴實數(shù)的取值范圍是故答案為【點睛】解答此類問題時要注意兩點:一是根據(jù)函數(shù)在上單調(diào)遞增得到在定義域的每一個區(qū)間上函數(shù)都要遞增;二是要注意在分界點處的函數(shù)值的大小,這一點容易忽視,屬于中檔題14、##【解析】由題意,根據(jù)必要不充分條件可得?,從而建立不等關(guān)系即可求解.【詳解】解:不等式的解集為,不等式的解集為,因為“”是“”的必要不充分條件,所以?,所以,解得,所以實數(shù)的取值范圍為,故答案為:.15、1【解析】根據(jù)兩直線垂直時,系數(shù)間滿足的關(guān)系列方程即可求解.【詳解】由題意可得:,解得:故答案為:【點睛】本題考查直線垂直的位置關(guān)系,考查理解辨析能力,屬于基礎(chǔ)題.16、【解析】由指數(shù)式與對數(shù)式的互化公式求解即可【詳解】因為,所以,故答案為:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)首先應(yīng)用向量數(shù)量積坐標(biāo)公式求得,結(jié)合,求得,得到結(jié)果;(2)結(jié)合題的條件,利用同角三角函數(shù)關(guān)系式求得,結(jié)合角的范圍以及(1)的結(jié)論,求得,再應(yīng)用余弦和角公式求得的值,結(jié)合角的范圍求得,得到結(jié)果.【詳解】(1)因為,,所以因為,所以,即.(2)因為,,所以.因為,,所以.因為,所以,所以.因為,,所以,所以.【點睛】該題考查的是有關(guān)三角恒等變換的問題,涉及到的知識點有向量數(shù)量積坐標(biāo)公式,同角三角函數(shù)關(guān)系式,余弦的和角公式,利用角的三角函數(shù)值的大小,結(jié)合角的范圍求角的大小,屬于簡單題目.18、(1)﹣1;(2)0≤t;(3)m≤﹣3或m≥3【解析】(1)由二次函數(shù)的圖像與性質(zhì)即可求解.(2)采用換元把方程化為t2﹣(2+2k)t+1=0在[1,2]上有解,然后再分離參數(shù)法,化為t與2+2k在[1,2]上有交點即可求解.(3)求出|f(x1)﹣f(x2)|max<1,把問題轉(zhuǎn)化為1≤m2﹣2mp﹣2恒成立,研究關(guān)于的函數(shù)h(p)=﹣2mp+m2﹣3,使其最小值大于零即可.【詳解】(1)函數(shù)f(x)=x2﹣2x+1+a對稱軸為x=1,所以區(qū)間[1,2]上f(x)min=f(1)=a,由根據(jù)題意函數(shù)f(x)=x2﹣2x+1+a在區(qū)間[1,2]上有最小值﹣1所以a=﹣1(2)由(1)知f(x)=x2﹣2x,若關(guān)于x的方程f(log2x)+1﹣2k?log2x=0在[2,4]上有解,令t=log2x,t∈[1,2]則f(t)+1﹣2kt=0,即t2﹣(2+2k)t+1=0在[1,2]上有解,t2+2k在[1,2]上有解,令函數(shù)g(t)=t,在(0,1)單調(diào)遞減,在(1,+∞)單調(diào)遞增所以g(1)≤2+2k≤g(2),即2≤2+2t,解得0≤t(3)若對任意的x1,x2∈(1,2],|f(x1)﹣f(x2)|max<1,若對任意的x1,x2∈(1,2],任意的p∈[﹣1,1],都有|f(x1)﹣f(x2)|≤m2﹣2mp﹣2成立,則1≤m2﹣2mp﹣2,即m2﹣2mp﹣3≥0,令h(p)=﹣2mp+m2﹣3,所以h(﹣1)=2m+m2﹣3≥0,且h(1)=﹣2m+m2﹣3≥0,解得m≤﹣3或m≥3【點睛】本題主要考查了二次函數(shù)的圖像與性質(zhì)、函數(shù)與方程以及不等式恒成立問題,綜合性比較強,需有較強的邏輯推理能力,屬于難題.19、(1)15,3225;(2).【解析】(1)將數(shù)據(jù)代入公式,即可求得平均數(shù)和方差.(2)6場比賽中得分不超過平均數(shù)的有4場,可記為,超過平均數(shù)的有2場,可記為,分別求得6場比賽中抽出2場,總事件及滿足題意的事件,根據(jù)古典概型概率公式,即可得答案.【詳解】解:(1)平均數(shù)方差(2)由題意得,6場比賽中得分不超過平均數(shù)的有4場,可記為超過平均數(shù)的有2場,可記為記從6場比賽中抽出2場,抽到的2場都不超過平均數(shù)為事件A從6場比賽中抽出2場,共有以下情形:,共有15個基本事件,事件A包含6個基本事件所以20、(1)(2)或.【解析】(1)設(shè)圓的方程為,根據(jù)題意列出方程組,求得的值,即可求解;(2)由圓的弦長公式,求得圓心到直線的距離為,分類直線的斜率不存在和斜率存在兩種情況討論,即可求得直線的方程.【小問1詳解】解:圓經(jīng)過兩點,且圓心在直線上,設(shè)圓的方程為,可得,解得,所以圓的方程為,即.【小問2詳解】解:由圓,可得圓心,半徑為,因為直線過點,且被圓截得的弦長為,可得,解得,即圓心到直線的距離為,當(dāng)直線的斜率不存在時,直線的方程為,此時圓心到直線的距離為,符合題意;當(dāng)直線的斜率存在時,設(shè)直線的斜率為,可得直線的方程為,即由圓心到直線的距離為,解得,所以直線的方程為,即,綜上可得,所求直線方程為或.21、(1)為奇函數(shù);證明見解析;(2).【解析】(1)利用奇函數(shù)的定
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 支付結(jié)算規(guī)范管理制度
- 手工魚竿買賣合同范本
- 工程設(shè)施外包合同范本
- 明星直播帶貨合同范本
- 小區(qū)服務(wù)代駕合同范本
- 船舶工具管理制度規(guī)范
- 自律行為規(guī)范懲罰制度
- 田間用水制度規(guī)范
- 科學(xué)規(guī)范議事決策制度
- 規(guī)范公司會議管理制度
- 腎病綜合征中醫(yī)護理查房
- 山東省濟南市歷城區(qū)2024-2025學(xué)年八年級上學(xué)期期末考試英語試卷
- DB51T 3115-2023 四川省政務(wù)服務(wù)評價數(shù)據(jù)匯聚規(guī)范
- JJF(京) 151-2024 藥物溶出度儀溫度參數(shù)校準(zhǔn)規(guī)范
- (新版)特種設(shè)備安全管理取證考試題庫(濃縮500題)
- 標(biāo)準(zhǔn)維修維護保養(yǎng)服務(wù)合同
- 蘇教譯林版五年級上冊英語第八單元Unit8《At Christmas》單元測試卷
- 《社會調(diào)查研究與方法》課程復(fù)習(xí)題-課程ID-01304試卷號-22196
- 電力工程有限公司管理制度制度范本
- 科研倫理與學(xué)術(shù)規(guī)范-課后作業(yè)答案
- 頂管工程施工檢查驗收表
評論
0/150
提交評論