內(nèi)蒙古包頭市包鋼第四中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第1頁
內(nèi)蒙古包頭市包鋼第四中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第2頁
內(nèi)蒙古包頭市包鋼第四中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第3頁
內(nèi)蒙古包頭市包鋼第四中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第4頁
內(nèi)蒙古包頭市包鋼第四中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

內(nèi)蒙古包頭市包鋼第四中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等比數(shù)列的前n項和為,,,則()A. B.C. D.2.已知直線和平面,且在上,不在上,則下列判斷錯誤的是()A.若,則存在無數(shù)條直線,使得B.若,則存在無數(shù)條直線,使得C.若存在無數(shù)條直線,使得,則D.若存在無數(shù)條直線,使得,則3.已知直線與直線平行,且直線在軸上的截距比在軸上的截距大,則直線的方程為()A. B.C. D.4.已知數(shù)列的通項公式為,是數(shù)列的最小項,則實數(shù)的取值范圍是()A. B.C. D.5.已知直線,當(dāng)變化時,所有直線都恒過點(diǎn)()A.B.C.D.6.上海世博會期間,某日13時至21時累計入園人數(shù)的折線圖如圖所示,那么在13時~14時,14時~15時,…,20時~21時八個時段中,入園人數(shù)最多的時段是()A.13時~14時 B.16時~17時C.18時~19時 D.19時~20時7.已知函數(shù),,若對于任意的,存在唯一的,使得,則實數(shù)a的取值范圍是()A(e,4) B.(e,4]C.(e,4) D.(,4]8.拋物線y=4x2的焦點(diǎn)坐標(biāo)是()A.(0,1) B.(1,0)C. D.9.若,則的虛部為()A. B.C. D.10.如圖為學(xué)生做手工時畫的橢圓(其中網(wǎng)格是由邊長為1的正方形組成),它們的離心率分別為,則()A. B.C. D.11.已知等差數(shù)列的前項和為,且,,則()A.3 B.5C.6 D.1012.已知直線平分圓C:,則最小值為()A.3 B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖:二面角等于,是棱上兩點(diǎn),分別在半平面內(nèi),,則的長等于__________.14.已知數(shù)列的前項和為,且,若點(diǎn)在直線上,則______;______.15.如圖所示,在正方體中,點(diǎn)是底面內(nèi)(含邊界)的一點(diǎn),且平面,則異面直線與所成角的取值范圍為____________16.若數(shù)列滿足,,則__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知直線,圓.(1)證明:直線l與圓C相交;(2)設(shè)l與C的兩個交點(diǎn)分別為A、B,弦AB的中點(diǎn)為M,求點(diǎn)M的軌跡方程;(3)在(2)的條件下,設(shè)圓C在點(diǎn)A處的切線為,在點(diǎn)B處的切線為,與的交點(diǎn)為Q.試探究:當(dāng)m變化時,點(diǎn)Q是否恒在一條定直線上?若是,請求出這條直線的方程;若不是,說明理由.18.(12分)已知橢圓的左,右焦點(diǎn)為,橢圓的離心率為,點(diǎn)在橢圓C上(1)求橢圓C的方程;(2)點(diǎn)T為橢圓C上的點(diǎn),若點(diǎn)T在第一象限,且與x軸垂直,過T作兩條斜率互為相反數(shù)的直線分別與橢圓C交于點(diǎn)M,N,探究直線的斜率是否為定值?若為定值,請求之;若不為定值,請說明理由19.(12分)已知圓C的圓心在直線上,且過點(diǎn),(1)求圓C的方程;(2)過點(diǎn)作圓C的切線,求切線的方程20.(12分)已知函數(shù),.(1)討論函數(shù)的單調(diào)性;(2)若不等式在上恒成立,求實數(shù)的取值范圍.21.(12分)已知等比數(shù)列滿足(1)求的通項公式;(2)記的前n項和為,證明:,,成等差數(shù)列22.(10分)設(shè)F為橢圓的右焦點(diǎn),過點(diǎn)的直線與橢圓C交于兩點(diǎn).(1)若點(diǎn)B為橢圓C的上頂點(diǎn),求直線的方程;(2)設(shè)直線的斜率分別為,,求證:為定值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由,可得等比數(shù)列公比q=2,利用等比數(shù)列求和公式和通項公式即可求.【詳解】設(shè)等比數(shù)列的公比為q,則,.故選:A.2、D【解析】根據(jù)直線和直線,直線和平面的位置關(guān)系依次判斷每一個選項得到答案.【詳解】若,則平行于過的平面與的交線,當(dāng)時,,則存在無數(shù)條直線,使得,A正確;若,垂直于平面中的所有直線,則存在無數(shù)條直線,使得,B正確;若存在無數(shù)條直線,使得,,,則,C正確;當(dāng)時,存在無數(shù)條直線,使得,D錯誤.故選:D.3、A【解析】分析可知直線不過原點(diǎn),可設(shè)直線的方程為,其中且,利用斜率關(guān)系可求得實數(shù)的值,化簡可得直線的方程.【詳解】若直線過原點(diǎn),則直線在兩坐標(biāo)軸上的截距相等,不合乎題意,設(shè)直線的方程為,其中且,則直線的斜率為,解得,所以,直線的方程為,即.故選:A.4、D【解析】利用最值的含義轉(zhuǎn)化為不等式恒成立問題解決即可【詳解】解:由題意可得,整理得,當(dāng)時,不等式化簡為恒成立,所以,當(dāng)時,不等式化簡為恒成立,所以,綜上,,所以實數(shù)的取值范圍是,故選:D5、D【解析】將直線方程整理為,從而可得直線所過的定點(diǎn).【詳解】可化為,∴直線過定點(diǎn),故選:D.6、B【解析】要找入園人數(shù)最多的,只要根據(jù)函數(shù)圖象找出圖象中變化最大的即可【詳解】結(jié)合函數(shù)的圖象可知,在13時~14時,14時~15時,…,20時~21時八個時段中,圖象變化最快的為16到17點(diǎn)之間故選:B.【點(diǎn)睛】本題考查折線統(tǒng)計圖的實際應(yīng)用,屬于基礎(chǔ)題.7、B【解析】結(jié)合導(dǎo)數(shù)和二次函數(shù)的性質(zhì)可求出和的值域,結(jié)合已知條件可得,,從而可求出實數(shù)a的取值范圍.【詳解】解:g(x)=x2ex的導(dǎo)函數(shù)為g′(x)=2xex+x2ex=x(x+2)ex,當(dāng)時,,由時,,時,,可得g(x)在[–1,0]上單調(diào)遞減,在(0,1]上單調(diào)遞增,故g(x)在[–1,1]上的最小值為g(0)=0,最大值為g(1)=e,所以對于任意的,.因為開口向下,對稱軸為軸,又,所以當(dāng)時,,當(dāng)時,,則函數(shù)在[,2]上的值域為[a–4,a],且函數(shù)f(x)在,圖象關(guān)于軸對稱,在(,2]上,函數(shù)單調(diào)遞減.由題意,得,,可得a–4≤0<e<,解得ea≤4故選:B【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)求函數(shù)的最值,考查了二次函數(shù)的性質(zhì),屬于中檔題.本題的難點(diǎn)是這一條件的轉(zhuǎn)化.8、C【解析】將拋物線方程化為標(biāo)準(zhǔn)方程,由此可拋物線的焦點(diǎn)坐標(biāo)得選項.【詳解】解:將拋物線y=4x2的化為標(biāo)準(zhǔn)方程為x2=y(tǒng),p=,開口向上,焦點(diǎn)在y軸的正半軸上,故焦點(diǎn)坐標(biāo)為(0,).故選:C9、A【解析】根據(jù)復(fù)數(shù)的運(yùn)算化簡,由復(fù)數(shù)概念即可求解.【詳解】因為,所以的虛部為,故選:A10、D【解析】根據(jù)圖知分別得到橢圓、、的半長軸和半短軸,再由求解比較即可.【詳解】由圖知橢圓的半長軸和半短軸分別為:,橢圓的半長軸和半短軸分別為:,橢圓的半長軸和半短軸分別為:,所以,,,所以,故選:D11、B【解析】根據(jù)等差數(shù)列的性質(zhì),以及等差數(shù)列的前項和公式,由題中條件,即可得出結(jié)果.【詳解】因為數(shù)列為等差數(shù)列,由,可得,,則.故選:B.【點(diǎn)睛】本題主要考查等差數(shù)列的性質(zhì),以及等差數(shù)列前項和的基本量運(yùn)算,屬于基礎(chǔ)題型.12、D【解析】根據(jù)直線過圓心求得,再利用基本不等式求和的最小值即可.【詳解】根據(jù)題意,直線過點(diǎn),即,則,當(dāng)且僅當(dāng),即時取得最小值.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意,二面角等于,根據(jù),結(jié)合向量的運(yùn)算,即可求解.【詳解】由題意,二面角等于,可得向量,,因為,可得,所以.故答案為:14、①.;②.【解析】根據(jù)等差數(shù)列的定義,結(jié)合等差數(shù)列前項和公式、裂項相消法進(jìn)行求解即可.【詳解】因為點(diǎn)在直線上,所以,所以數(shù)列是以,公差為的等差數(shù)列,所以;因為,所以,于是,故答案為:;15、【解析】過作平面平面,得到在與平面的交線上,連接,證得平面平面,得到點(diǎn)在上,設(shè)正方體的棱長為,且,得到,,設(shè)與所成角為,利用向量的夾角公式,求得,結(jié)合二次函數(shù)的性質(zhì),即可求解.【詳解】過作平面平面,因為點(diǎn)是底面內(nèi)(含邊界)的一點(diǎn),且平面,則平面,即在與平面的交線上,連接,因為且,所以四邊形是平行四邊形,所以,平面,同理可證平面,所以平面平面,則平面即為,點(diǎn)在線段上,設(shè)正方體的棱長為,且,則,,可得,設(shè)與所成角為,則,當(dāng)時,取得最小值,最小值為,當(dāng)或時,取得最大值,最大值為故答案為16、7【解析】根據(jù)遞推公式,依次求得值.【詳解】依題意,由,可知,故答案為:7三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2);(3)點(diǎn)Q恒在直線上,理由見解析.【解析】(1)求出直線過定點(diǎn),得到在圓內(nèi)部,故證明直線l與圓C相交;(2)設(shè)出點(diǎn),利用垂直得到等量關(guān)系,整理后即為軌跡方程;(3)利用Q、A、B、C四點(diǎn)共圓,得到此圓方程,聯(lián)立,求出相交弦的方程,即直線的方程,根據(jù)直線過的定點(diǎn),得到,從而得到點(diǎn)Q恒在直線上.【小問1詳解】證明:直線過定點(diǎn),代入得:,故在圓內(nèi),故直線l與圓C相交;【小問2詳解】圓的圓心為,設(shè)點(diǎn),由垂徑定理得:,即,化簡得:,點(diǎn)M的軌跡方程為:【小問3詳解】設(shè)點(diǎn),由題意得:Q、A、B、C四點(diǎn)共圓,且圓的方程為:,即,與圓C的方程聯(lián)立,消去二次項得:,即為直線的方程,因為直線過定點(diǎn),所以,解得:,所以當(dāng)m變化時,點(diǎn)Q恒在直線上.【點(diǎn)睛】本題的第三問是稍有難度的,處理方法是根據(jù)四點(diǎn)共圓,直徑的端點(diǎn)坐標(biāo),求出此圓的方程,與曲線聯(lián)立后得到相交弦的方程,是處理此類問題的關(guān)鍵.18、(1);(2)直線的斜率為定值,且定值為.【解析】(1)根據(jù)橢圓的離心率及所過的點(diǎn)求出橢圓參數(shù)a、b,即可得橢圓標(biāo)準(zhǔn)方程.(2)由題設(shè)得,法一:設(shè)為,聯(lián)立橢圓方程應(yīng)用韋達(dá)定理求M坐標(biāo),根據(jù)與斜率關(guān)系求N的坐標(biāo),應(yīng)用兩點(diǎn)式求斜率;法二:設(shè)為,,聯(lián)立橢圓方程,應(yīng)用韋達(dá)定理及得到關(guān)于參數(shù)m、k的方程,即可判斷是否為定值.【小問1詳解】由題意,則,又,所以橢圓C方程為,代入有,解得,所以,故橢圓的標(biāo)準(zhǔn)方程為;【小問2詳解】由題設(shè)易知:,法一:設(shè)直線為,由,消去y,整理得,因為方程有一個根為,所以M的橫坐標(biāo)為,縱坐標(biāo),故M為,用代替k,得N為,所以,故直線的斜率為定值法二:由已知直線的斜率存在,可設(shè)直線為,,由,消去y,整理得,所以,而,又,代入整理得,所以,即,若,則直線過點(diǎn)T,不合題意,所以.即,故直線的斜率為定值.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:第二問,設(shè)直線方程并聯(lián)立橢圓方程,應(yīng)用韋達(dá)定理及得到關(guān)于直線斜率的方M、N程,或求出的坐標(biāo),應(yīng)用兩點(diǎn)式求斜率.19、(1)(2)或【解析】(1)由圓心在直線上,設(shè),由點(diǎn)在圓上,列方程求,由此求出圓心坐標(biāo)及半徑,確定圓的方程;(2)當(dāng)切線的斜率存在時,設(shè)其方程為,由切線的性質(zhì)列方程求,再檢驗直線是否為切線,由此確定答案.小問1詳解】因為圓C的圓心在直線上,設(shè)圓心的坐標(biāo)為,圓C過點(diǎn),,所以,即,解得,則圓心,半徑,所以圓的方程為;【小問2詳解】當(dāng)切線的斜率存在時,設(shè)直線的方程為,即,因為直線和圓相切,得,解得,所以直線方程為,當(dāng)切線的斜率不存在時,易知直線也是圓的切線,綜上,所求的切線方程為或20、(1)時,函數(shù)在單調(diào)遞增,無減區(qū)間;時,函數(shù)在單調(diào)遞增,在單調(diào)遞減.(2).【解析】(1)對求導(dǎo)得到,分和進(jìn)行討論,判斷出的正負(fù),從而得到的單調(diào)性;(2)設(shè)函數(shù),分和進(jìn)行討論,根據(jù)的單調(diào)性和零點(diǎn),得到答案.【詳解】解:(1)函數(shù)定義域是,,當(dāng)時,,函數(shù)在單調(diào)遞增,無減區(qū)間;當(dāng)時,令,得到,即,所以,,單調(diào)遞增,,,單調(diào)遞減,綜上所述,時,函數(shù)在單調(diào)遞增,無減區(qū)間;時,函數(shù)在單調(diào)遞增,在單調(diào)遞減.(2)由已知在恒成立,令,,可得,則,所以在遞增,所以,①當(dāng)時,,在遞增,所以成立,符合題意.②當(dāng)時,,當(dāng)時,,∴,使,即時,在遞減,,不符合題意.綜上得【點(diǎn)睛】本題考查利用導(dǎo)數(shù)討論函數(shù)的單調(diào)性,根據(jù)導(dǎo)數(shù)解決不等式恒成立問題,屬于中檔題.21、(1)(2)證明見解析【解析】(1)設(shè)等比數(shù)列的公比為,根據(jù),求得的值,即可求得數(shù)列的通項公式;(2)由等比數(shù)列的求和公式求得,得到,,化簡得到,即可求解【小問1詳解】解:設(shè)等比數(shù)列的公比為,因為,所以,解得,所以,所以數(shù)列的通項公式【小問2詳解】解:由(1)可得,,,所以,所以,即,,成等差數(shù)列22、(1);(2)證明見解析.【解析】(1)求出的直線方程,結(jié)合橢圓方程可求的坐標(biāo),從而可求的直線方程;(2)設(shè),直線(或),則可用兩點(diǎn)的坐標(biāo)表示或,聯(lián)立直線的方程和橢圓的方程,消元后利用韋達(dá)定理可化簡前者從而得到要證明的結(jié)論【詳解】(1)若B為橢圓的上頂點(diǎn),則.又過點(diǎn),故直線由可得,解得即點(diǎn),又

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論