版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2026屆重慶市示范初中數(shù)學(xué)高二上期末質(zhì)量檢測(cè)模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在中國(guó)古代,人們用圭表測(cè)量日影長(zhǎng)度來確定節(jié)氣,一年之中日影最長(zhǎng)一天被定為冬至.從冬至算起,依次有冬至、小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個(gè)節(jié)氣,其日影長(zhǎng)依次成等差數(shù)列,若冬至、立春、春分日影長(zhǎng)之和為31.5尺,小寒、雨水,清明日影長(zhǎng)之和為28.5尺,則大寒、驚蟄、谷雨日影長(zhǎng)之和為()A.25.5尺 B.34.5尺C.37.5尺 D.96尺2.“若”為真命題,那么p是(
)A. B.C. D.3.由倫敦著名建筑事務(wù)所SteynStudio設(shè)計(jì)的南非雙曲線大教堂驚艷世界,該建筑是數(shù)學(xué)與建筑完美結(jié)合造就的藝術(shù)品,若將如圖所示的大教堂外形弧線的一段近似看成雙曲線下支的一部分,離心率為,則該雙曲線的漸近線方程為()A. B.C. D.4.已知三個(gè)頂點(diǎn)都在拋物線上,且為拋物線的焦點(diǎn),若,則()A.6 B.8C.10 D.125.從某個(gè)角度觀察籃球(如圖1),可以得到一個(gè)對(duì)稱的平面圖形,如圖2所示,籃球的外輪形為圓O,將籃球表面的粘合線看成坐標(biāo)軸和雙曲線,若坐標(biāo)軸和雙曲線與圓O的交點(diǎn)將圓O的周長(zhǎng)八等分,AB=BC=CD,則該雙曲線的離心率為()A. B.C. D.6.已知,是雙曲線C:(,)的兩個(gè)焦點(diǎn),過點(diǎn)與x軸垂直的直線與雙曲線C交于A、B兩點(diǎn),若是等腰直角三角形,則雙曲線C的離心率為()A. B.C. D.7.如圖,直三棱柱的所有棱長(zhǎng)均相等,P是側(cè)面內(nèi)一點(diǎn),設(shè),若P到平面的距離為2d,則點(diǎn)P的軌跡是()A.圓的一部分 B.橢圓的一部分C.拋物線的一部分 D.雙曲線的一部分8.某單位有840名職工,現(xiàn)采用系統(tǒng)抽樣方法,抽取42人做問卷調(diào)查,將840人按1,2,…,840隨機(jī)編號(hào),則抽取的42人中,編號(hào)落入?yún)^(qū)間[481,720]的人數(shù)為A.11 B.12C.13 D.149.命題“若,則”為真命題,那么不可能是()A. B.C. D.10.若直線與直線垂直,則a的值為()A.2 B.1C. D.11.若橢圓上一點(diǎn)到C的兩個(gè)焦點(diǎn)的距離之和為,則()A.1 B.3C.6 D.1或312.已知圓上有三個(gè)點(diǎn)到直線的距離等于1,則的值為()A. B.C. D.1二、填空題:本題共4小題,每小題5分,共20分。13.雙曲線的左焦點(diǎn)到直線的距離為________.14.若經(jīng)過點(diǎn)且斜率為1的直線與拋物線交于,兩點(diǎn),則______.15.若橢圓的長(zhǎng)軸是短軸的2倍,且經(jīng)過點(diǎn),則橢圓的離心率為________.16.已知橢圓與雙曲線具有相同的焦點(diǎn),,且在第一象限交于點(diǎn),設(shè)橢圓和雙曲線的離心率分別為,,若,則的最小值為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓C:的右頂點(diǎn)為A,上頂點(diǎn)為B.離心率為,(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)設(shè)橢圓的右焦點(diǎn)為F,過點(diǎn)F的直線l與橢圓C相交于D,E兩點(diǎn),直線:與x軸相交于點(diǎn)H,過點(diǎn)D作,垂足為①求四邊形ODHE(O為坐標(biāo)原點(diǎn))面積的取值范圍;②證明:直線過定點(diǎn)G,并求點(diǎn)G的坐標(biāo)18.(12分)已知曲線:.(1)若曲線是雙曲線,求的取值范圍;(2)設(shè),已知過曲線的右焦點(diǎn),傾斜角為的直線交曲線于A,B兩點(diǎn),求.19.(12分)如圖,已知圓錐SO底面圓的半徑r=1,直徑AB與直徑CD垂直,母線SA與底面所成的角為.(1)求圓錐SO的側(cè)面積;(2)若E為母線SA的中點(diǎn),求二面角E-CD-B的大小.(結(jié)果用反三角函數(shù)值表示)20.(12分)已知數(shù)列滿足(1)證明數(shù)列是等比數(shù)列,并求數(shù)列的通項(xiàng)公式;(2)令,求數(shù)列的前項(xiàng)和21.(12分)設(shè)函數(shù),(1)求的最大值;(2)求證:對(duì)于任意x∈(1,7),e1-x+22.(10分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.(1)求直線的普通方程,曲線C的直角坐標(biāo)方程;(2)設(shè)直線與曲線C相交于A,B兩點(diǎn),點(diǎn),求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】由題意可知,十二個(gè)節(jié)氣其日影長(zhǎng)依次成等差數(shù)列,設(shè)冬至日的日影長(zhǎng)為尺,公差為尺,利用等差數(shù)列的通項(xiàng)公式,求出,即可求出,從而得到答案【詳解】設(shè)從冬至日起,小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個(gè)節(jié)氣其日影長(zhǎng)依次成等差數(shù)列{},如冬至日的日影長(zhǎng)為尺,設(shè)公差為尺.由題可知,所以,,,,故選:A2、A【解析】求不等式的解集,根據(jù)解集判斷p.【詳解】由解得-2<x<4,所以p是.故選:A.3、B【解析】求出的值,可得出雙曲線的漸近線方程.【詳解】由已知可得,因此,該雙曲線的漸近線方程為.故選:B.4、D【解析】設(shè),,,由向量關(guān)系化為坐標(biāo)關(guān)系,再結(jié)合拋物線的焦半徑公式即可計(jì)算【詳解】由得焦點(diǎn),準(zhǔn)線方程為,設(shè),,由得則,化簡(jiǎn)得所以故選:D5、D【解析】設(shè)出雙曲線方程,通過做標(biāo)準(zhǔn)品和雙曲線與圓O的交點(diǎn)將圓的周長(zhǎng)八等分,且AB=BC=CD,推出點(diǎn)在雙曲線上,然后求出離心率即可.【詳解】設(shè)雙曲線的方程為,則,因?yàn)锳B=BC=CD,所以,所以,因?yàn)樽鴺?biāo)軸和雙曲線與圓O的交點(diǎn)將圓O的周長(zhǎng)八等分,所以在雙曲線上,代入可得,解得,所以雙曲線的離心率為.故選:D6、B【解析】根據(jù)等腰直角三角形的性質(zhì),結(jié)合雙曲線的離心率公式進(jìn)行求解即可.【詳解】由題意不妨設(shè),,當(dāng)時(shí),由,不妨設(shè),因?yàn)槭堑妊苯侨切危杂?,或舍去,故選:B7、B【解析】取的中點(diǎn),得出平面,作,在直角中,求得,以為原點(diǎn),為軸,為軸建立平面直角坐標(biāo)系,求得點(diǎn)的軌跡方程,即可求解.【詳解】如圖所示,取的中點(diǎn),連接,得到平行于平面且過點(diǎn)的平面,如圖(1)(2)所示,作,則P1與E重合,則,在直角中,可得,在圖(3)中,設(shè)直三棱柱的所有棱長(zhǎng)均為,且,以為原點(diǎn),為軸,為軸建立平面直角坐標(biāo)系,則,所以,即所以,整理得,所以點(diǎn)P的軌跡是橢圓的一部分.故選:B.8、B【解析】使用系統(tǒng)抽樣方法,從840人中抽取42人,即從20人抽取1人∴從編號(hào)1~480的人中,恰好抽取480/20=24人,接著從編號(hào)481~720共240人中抽取240/20=12人考點(diǎn):系統(tǒng)抽樣9、D【解析】根據(jù)命題真假的判斷,對(duì)四個(gè)選項(xiàng)一一驗(yàn)證即可.【詳解】對(duì)于A:若,則必成立;對(duì)于B:若,則必成立;對(duì)于C:若,則必成立;對(duì)于D:由不能得出,所以不可能是.故選:D10、A【解析】根據(jù)兩條直線垂直的條件列方程,解方程求得的值.【詳解】由于直線與直線垂直,所以,解得.故選:A11、B【解析】討論焦點(diǎn)的位置利用橢圓定義可得答案.【詳解】若,則由得(舍去);若,則由得故選:B.12、A【解析】求出圓心和半徑,由題意可得圓心到直線的距離,列方程即可求得的值.【詳解】由圓可得圓心,半徑,因?yàn)閳A上有三個(gè)點(diǎn)到直線的距離等于1,所以圓心到直線的距離,可得:,故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)雙曲線方程求得左焦點(diǎn)的坐標(biāo),利用點(diǎn)到直線的距離公式即可求得結(jié)果.【詳解】因?yàn)殡p曲線的方程為,設(shè)其左焦點(diǎn)的坐標(biāo)為,故可得,解得,故左焦點(diǎn)的坐標(biāo)為,則其到直線的距離.故答案為:.14、【解析】由題意寫出直線的方程與拋物線方程聯(lián)立,得出韋達(dá)定理,由弦長(zhǎng)公式可得答案.【詳解】設(shè),則直線的方程為由,得所以所以故答案為:15、【解析】分類討論焦點(diǎn)在軸與焦點(diǎn)在軸兩種情況.【詳解】因?yàn)闄E圓經(jīng)過點(diǎn),當(dāng)焦點(diǎn)在軸時(shí),可知,,所以,所以,當(dāng)焦點(diǎn)在軸時(shí),同理可得.故答案為:16、【解析】由題意設(shè)焦距為,橢圓長(zhǎng)軸長(zhǎng)為,雙曲線實(shí)軸為,令在雙曲線的右支上,由已知條件結(jié)合雙曲線和橢圓的定義推出,由此能求出的最小值【詳解】由題意設(shè)焦距為,橢圓長(zhǎng)軸長(zhǎng)為,雙曲線實(shí)軸為,令在雙曲線的右支上,由雙曲線的定義,由橢圓定義,可得,,又,,可得,得,即,可得,則,當(dāng)且僅當(dāng),上式取得等號(hào),可得的最小值為故答案為:【點(diǎn)睛】本題考查橢圓和雙曲線的性質(zhì),主要是離心率,解題時(shí)要熟練掌握雙曲線、橢圓的定義,注意均值定理的合理運(yùn)用三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)①;②詳見解析;.【解析】(1)由題得,即求;(2)①由題可設(shè),利用韋達(dá)定理法可得,進(jìn)而可得四邊形ODHE面積,再利用對(duì)勾函數(shù)的性質(zhì)可求范圍;②由題可得,令,通過計(jì)算可得,即得.【小問1詳解】由題可得,解得,∴橢圓C的標(biāo)準(zhǔn)方程.【小問2詳解】①由題可知,可設(shè)直線,,由,可得,∴,,∴,∴四邊形ODHE面積,令,則,因?yàn)?,所以,?dāng)時(shí),取等號(hào),∴,∴四邊形ODHE面積取值范圍為;②由上可得,直線,令,得,由,可得,∴,∴直線過定點(diǎn)G.18、(1)(2)【解析】(1)利用雙曲線的標(biāo)準(zhǔn)方程直接列不等式組,即可求解;(2)先求出直線l的方程為:,利用“設(shè)而不求法”和弦長(zhǎng)公式求弦長(zhǎng).【小問1詳解】要使曲線:為雙曲線,只需,解得:,即的取值范圍.【小問2詳解】當(dāng)m=0時(shí),曲線C的方程為,可得,所以右焦點(diǎn),由題意可得直線l的方程為:.設(shè),聯(lián)立整理可得:,可得:所以弦長(zhǎng),所以19、(1)(2)【解析】(1)先根據(jù)母線與底面的夾角求出圓錐的母線長(zhǎng),然后根據(jù)圓錐的側(cè)面積公式即可(2)利用三角形的中位線性質(zhì),先求出二面角,然后利用二面角與二面角的互補(bǔ)關(guān)系即可求得【小問1詳解】根據(jù)母線SA與底面所成的角為,且底面圓的半徑可得:則圓錐的側(cè)面積為:【小問2詳解】如圖所示,過點(diǎn)作底面的垂線交于,連接,則為的中位線則有:,,易知,則,又直徑AB與直徑CD垂直,則則有:為二面角可得:又二面角與二面角互為補(bǔ)角,則二面角的余弦值為故二面角大小為20、(1)證明見解析,(2)【解析】(1)根據(jù)等比數(shù)列的定義證明數(shù)列是以為首項(xiàng),2為公比的等比數(shù)列,進(jìn)而求解得答案;(2)根據(jù)錯(cuò)位相減法求和即可.【小問1詳解】解:數(shù)列滿足,∴數(shù)列是以為首項(xiàng),2為公比的等比數(shù)列,,即;∴【小問2詳解】解:,,,,21、(1)(2)證明見解析【解析】(1)求出,討論其導(dǎo)數(shù)后可得原函數(shù)的單調(diào)性,從而可得函數(shù)的最大值.(2)先證明任意的,總有,再利用放縮法和換元法將不等式成立問題轉(zhuǎn)化為任意恒成立,后者可利用導(dǎo)數(shù)證明.【小問1詳解】,當(dāng)時(shí),;當(dāng)時(shí),,故在上為增函數(shù),在上為減函數(shù),故.【小問2詳解】因?yàn)?,故?dāng)時(shí),,即,而在為減函數(shù),故在上有,故任意的,總有.要證任意恒成立,即證:任意恒成立,即證:任意恒成立,由(1)可得,任意,有即,故即證:任意恒成立,設(shè),即證:任意恒成立,即證:任意恒成立,即證:任意恒成立,即證:任意恒成立,設(shè),則,而在為增函數(shù),,故存在,使得,且時(shí),,時(shí),,故在為減函數(shù),在為增函數(shù),故任意,總有,故任意恒成立,所以任意恒成立.【點(diǎn)睛】思路點(diǎn)睛:不等式的恒成立,可結(jié)合不等式的形式將其轉(zhuǎn)化為若干段上的不等式的恒成立,在每段上可采用不同的方式(導(dǎo)數(shù)、放縮法等)進(jìn)行處理.22、(1)直線的普
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 線上比賽裁判制度規(guī)范
- 消防維保人員規(guī)范制度
- 河湖綠化管護(hù)制度規(guī)范
- 山西行業(yè)承諾制度規(guī)范
- 電玩城收銀員制度規(guī)范
- 移動(dòng)設(shè)備維修制度規(guī)范
- 管道系統(tǒng)工作制度規(guī)范
- 執(zhí)勤值守制度規(guī)范要求
- 工業(yè)茶葉采購(gòu)合同范本
- 投資公司理財(cái)合同范本
- 小學(xué)數(shù)學(xué)低年級(jí)學(xué)生學(xué)情分析
- 水利水電工程建設(shè)用地設(shè)計(jì)標(biāo)準(zhǔn)(征求意見稿)
- 供電一把手講安全課
- 本科實(shí)習(xí)男護(hù)生職業(yè)認(rèn)同感調(diào)查及影響因素分析
- T-GDWCA 0035-2018 HDMI 連接線標(biāo)準(zhǔn)規(guī)范
- 合肥機(jī)床行業(yè)現(xiàn)狀分析
- 面板堆石壩面板滑模結(jié)構(gòu)設(shè)計(jì)
- 無人機(jī)裝調(diào)檢修工培訓(xùn)計(jì)劃及大綱
- 國(guó)家開放大學(xué)《森林保護(hù)》形考任務(wù)1-4參考答案
- GB 31604.1-2023食品安全國(guó)家標(biāo)準(zhǔn)食品接觸材料及制品遷移試驗(yàn)通則
- 殯葬服務(wù)心得體會(huì) 殯儀館工作心得體會(huì)
評(píng)論
0/150
提交評(píng)論