版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2026屆黑龍江省安達市田家炳高級中學(xué)數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,是水平放置的的直觀圖,其中,,分別與軸,軸平行,則()A.2 B.C.4 D.2.設(shè),,則與的等比中項為()A. B.C. D.3.在等差數(shù)列中,,則()A.6 B.3C.2 D.14.方程表示的圖形是A.兩個半圓 B.兩個圓C.圓 D.半圓5.第屆全運會于年月在陜西西安順利舉辦,其中水上項目在西安奧體中心游泳跳水館進行,為了應(yīng)對比賽,大會組委會將對泳池進行檢修,已知泳池深度為,其容積為,如果池底每平方米的維修費用為元,設(shè)入水處的較短池壁長度為,且據(jù)估計較短的池壁維修費用與池壁長度成正比,且比例系數(shù)為,較長的池壁維修費用滿足代數(shù)式,則當(dāng)泳池的維修費用最低時值為()A. B.C. D.6.已知點是橢圓上一點,點,則的最小值為A. B.C. D.7.拋物線的準線方程是A. B.C. D.8.等比數(shù)列的前項和為,若,則()A. B.8C.1或 D.或9.定義域為的函數(shù)滿足,且的導(dǎo)函數(shù),則滿足的的集合為A. B.C. D.10.已知等比數(shù)列的前項和為,若,,則()A.20 B.30C.40 D.5011.函數(shù)在區(qū)間上平均變化率等于()A. B.C. D.12.已知是等比數(shù)列,則()A.數(shù)列是等差數(shù)列 B.數(shù)列是等比數(shù)列C.數(shù)列是等差數(shù)列 D.數(shù)列是等比數(shù)列二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)在R上連續(xù)且可導(dǎo),為偶函數(shù)且,其導(dǎo)函數(shù)滿足,則不等式的解集為___.14.已知橢圓C:的左右焦點分別為,,O為坐標原點,以下說法正確的是______①過點的直線與橢圓C交于A,B兩點,則的周長為8②橢圓C上存在點P,使得③橢圓C的離心率為④P為橢圓上一點,Q為圓上一點,則線段PQ的最大長度為315.已知為拋物線上任意一點,為拋物線的焦點,為平面內(nèi)一定點,則的最小值為__________.16.命題“”的否定為_____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓經(jīng)過點和,且圓心在直線上(1)求圓的標準方程;(2)直線過點,且與圓相切,求直線的方程;(3)設(shè)直線與圓相交于兩點,點為圓上的一動點,求的面積的最大值18.(12分)如圖,分別是橢圓C:的左,右焦點,點P在橢圓C上,軸,點A是橢圓與x軸正半軸的交點,點B是橢圓與y軸正半軸的交點,且,.(1)求橢圓C的方程;(2)已知M,N是橢圓C上的兩點,若點,,試探究點M,,N是否一定共線?說明理由.19.(12分)在棱長為1的正方體ABCD-A1B1C1D1中,求平面ACD1的一個法向量.20.(12分)已知圓C的圓心為,一條直徑的兩個端點分別在x軸和y軸上(1)求圓C的方程;(2)直線l:與圓C相交于M,N兩點,P(異于點M,N)為圓C上一點,求△PMN面積的最大值21.(12分)已知,命題p:對任意,不等式恒成立;命題q:存在,使得不等式成立;(1)若p為真命題,求a的取值范圍;(2)若為真命題,求a的取值范圍22.(10分)如圖,在棱長為2的正方體中,,分別為線段,的中點.(1)求點到平面的距離;(2)求平面與平面夾角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】先確定是等腰直角三角形,求出,再確定原圖的形狀,進而求出.【詳解】由題意可知是等腰直角三角形,,其原圖形是,,,,則,故選:D.2、C【解析】利用等比中項的定義可求得結(jié)果.【詳解】由題意可知,與的等比中項為.故選:C.3、B【解析】根據(jù)等差數(shù)列下標性質(zhì)進行求解即可.【詳解】因為是等差數(shù)列,所以,故選:B4、D【解析】其中,再兩邊同時平方,由此確定圖形【詳解】根據(jù)題意,,再兩邊同時平方,由此確定圖形為半圓.故選:D【點睛】幾何圖像中要注意與方程式是一一對應(yīng),故方程的中未知數(shù)的的取值范圍對應(yīng)到圖形中的坐標的取值范圍5、A【解析】根據(jù)題意得到泳池維修費用的的解析式,再利用導(dǎo)數(shù)求出最值即可【詳解】解:設(shè)泳池維修的總費用為元,則由題意得,則,令,解得,當(dāng)時,;當(dāng)時,,故當(dāng)時,有最小值因此,當(dāng)較短池壁為時,泳池的總維修費用最低故選A6、D【解析】設(shè),則,.所以當(dāng)時,的最小值為.故選D.7、C【解析】根據(jù)拋物線的概念,可得準線方程為8、C【解析】根據(jù)等比數(shù)列的前項和公式及等比數(shù)列通項公式即可求解.【詳解】設(shè)等比數(shù)列的公比為,則因為,所以,即,解得或,所以或.故選:C.9、B【解析】利用2f(x)<x+1構(gòu)造函數(shù)g(x)=2f(x)-x-1,進而可得g′(x)=2f′(x)-1>0.得出g(x)的單調(diào)性結(jié)合g(1)=0即可解出【詳解】令g(x)=2f(x)-x-1.因為f′(x)>,所以g′(x)=2f′(x)-1>0.所以g(x)單調(diào)增函數(shù)因為f(1)=1,所以g(1)=2f(1)-1-1=0.所以當(dāng)x<1時,g(x)<0,即2f(x)<x+1.故選B.【點睛】本題主要考察導(dǎo)數(shù)的運算以及構(gòu)造函數(shù)利用其單調(diào)性解不等式.屬于中檔題10、B【解析】根據(jù)等比數(shù)列前項和的性質(zhì)進行求解即可.【詳解】因為是等比數(shù)列,所以成等比數(shù)列,即成等比數(shù)列,顯然,故選:B11、C【解析】根據(jù)平均變化率的定義算出答案即可.【詳解】函數(shù)在區(qū)間上的平均變化率等于故選:C12、B【解析】取,可判斷AC選項;利用等比數(shù)列的定義可判斷B選項;取可判斷D選項.【詳解】若,則、無意義,A錯C錯;設(shè)等比數(shù)列的公比為,則,(常數(shù)),故數(shù)列是等比數(shù)列,B對;取,則,數(shù)列為等比數(shù)列,因為,,,且,所以,數(shù)列不是等比數(shù)列,D錯.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由已知條件可得圖象關(guān)于對稱,在上遞增,在上遞減,然后分四種情況討論求解即可【詳解】因為為偶函數(shù),所以的圖象關(guān)于軸對稱,所以的圖象關(guān)于對稱,因為,所以當(dāng)時,,當(dāng)時,,所以在上遞增,在上遞減,由,得,或,或,或,解得,或,或,或,綜上,,所以等式的解集為故答案為:14、①②④【解析】根據(jù)橢圓的幾何性質(zhì)結(jié)合的周長計算可判斷①;根據(jù),可通過以為直徑作圓,是否與橢圓相交判斷②;求出橢圓的離心率可判斷③;計算橢圓上的點到圓心的距離的最大值,即可判斷④.【詳解】對于①,由題意知:的周長等于,故①正確;對于②,,故以為直徑作圓,與橢圓相交,交點即設(shè)為P,故橢圓C上存在點P,使得,故②正確;對于③,,故③錯誤;對于④,設(shè)P為橢圓上一點,坐標為,則,故,因為,所以的最大值為2,故線段PQ的最大長度為2+1=3,故④正確,故答案為:①②④.15、3【解析】利用拋物線的定義,再結(jié)合圖形即求.【詳解】由題可得拋物線的準線為,設(shè)點在準線上的射影為,則根據(jù)拋物線的定義可知,∴要求取得最小值,即求取得最小,當(dāng)三點共線時最小,為.故答案為:3.16、【解析】根據(jù)特稱命題的否定是全稱命題,可得結(jié)果.【詳解】由特稱命題否定是全稱命題,故條件不變,否定結(jié)論所以“”的否定為“”故答案為:【點睛】本題主要考查特稱命題的否定是全稱命題,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)或(3)【解析】(1)解法一,根據(jù)題意設(shè)圓的標準方程為,進而待定系數(shù)法求解即可;解法二:由題知圓心在線段的垂直平分線上,進而結(jié)合題意得圓的圓心與半徑,寫出方程;(2)分直線的斜率存在與不存在兩種情況討論求解即可;(3)由幾何法求弦長得,進而到直線距離的最大值為,再計算面積即可.【小問1詳解】解:解法一:設(shè)圓的標準方程為,由已知得,解得,所以圓的標準方程為;解法二:由圓經(jīng)過點和,可知圓心在線段的垂直平分線上,將代入,得,即,半徑,所以圓的標準方程為;【小問2詳解】解:當(dāng)直線的斜率存在時,設(shè),即,由直線與圓相切,得,解得,此時,當(dāng)直線的斜率不存在時,直線顯然與圓相切所以直線的方程為或;【小問3詳解】解:圓心到直線的距離,所以,則點到直線距離的最大值為,所以的面積的最大值18、(1)(2)不一定共線,理由見解析【解析】(1)由橢圓定義可得a,利用∽△BOA可解;(2)考察軸時的情況,分析可知M,,N不一定共線.【小問1詳解】由題意得,,設(shè),,代入橢圓C的方程得,,可得.可得.由,,所以∽△BOA,所以,即,可得.又,,得.所以橢圓C的方程為.【小問2詳解】當(dāng)軸時,,設(shè),,則由已知條件和方程,可得,整理得,,解得或.由于,所以當(dāng)時,點M,,N共線;所以當(dāng)時,點M,,N不共線.所以點M,,N不一定共線.19、【解析】建立空間直角坐標系,由向量法求法向量即可.【詳解】如圖,建立空間直角坐標系,則設(shè)平面ACD1的法向量.,又為平面ACD1的一個法向量,化簡得令x=1,得y=z=1.平面ACD1的一個法向量.【點睛】本題主要考查了求平面的法向量,屬于中檔題.20、(1);(2).【解析】(1)設(shè)直徑兩端點分別為,,由中點公式求參數(shù)a、b,進而求半徑,即可得圓C的方程;(2)利用弦心距、半徑、弦長的幾何關(guān)系求,再由圓心到直線l的距離求P到直線l的距離的最大值,即可得△PMN面積的最大值【小問1詳解】設(shè)直徑兩端點分別為,,則,,所以,,則圓C半徑,所以C的方程為【小問2詳解】圓心C到直線l的距離,則,點P到直線l的距離的最大值為,所以,△PMN面積的最大值為21、(1)(2)【解析】(1)利用判別式可求的取值范圍,注意就是否為零分類討論;(2)根據(jù)題設(shè)可得真或真,后者可用參變分離求出的取值范圍,結(jié)合(1)可求的取值范圍.【小問1詳解】當(dāng)p為真命題時,當(dāng)時,不等式顯然成立;當(dāng)時,解得,故a取值范圍為.【小問2詳解】當(dāng)q為真命題時,問題等價于存在,使得不等式成立,即,∵,當(dāng)且僅當(dāng)x=1時等號成立,∴因為為真命題,所以真或真,故a的取值范圍是22、(1);(2).【解析】(1)以為原點,為軸
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 死因監(jiān)測上報制度規(guī)范
- 生鮮配送管理制度規(guī)范
- 私募管理制度規(guī)范要求
- 標簽色碼管理制度規(guī)范
- 網(wǎng)絡(luò)主播管理制度規(guī)范
- 美團工資管理制度規(guī)范
- 工地宿舍規(guī)范管理制度
- 規(guī)范夜市攤位管理制度
- 殯儀館調(diào)度室制度規(guī)范
- 數(shù)碼家電管理制度規(guī)范
- 《糖尿病合并高血壓患者管理指南(2025版)》解讀
- 職業(yè)暴露考試試題及答案
- DB61-T 1843-2024 酸棗種植技術(shù)規(guī)范
- 機械密封安裝及維護培訓(xùn)
- 古建筑修繕加固施工方案
- DG-TJ08-19-2023園林綠化養(yǎng)護標準
- 上海市2024-2025學(xué)年高二上學(xué)期期末考試英語試題(含答案無聽力原文及音頻)
- 實驗室評審不符合項原因及整改機制分析
- 農(nóng)貿(mào)市場攤位布局措施
- 一列腸ESD個案護理
- 污水泵站自動化控制方案
評論
0/150
提交評論