湖北省武漢市武昌區(qū)2026屆數(shù)學高一上期末調(diào)研模擬試題含解析_第1頁
湖北省武漢市武昌區(qū)2026屆數(shù)學高一上期末調(diào)研模擬試題含解析_第2頁
湖北省武漢市武昌區(qū)2026屆數(shù)學高一上期末調(diào)研模擬試題含解析_第3頁
湖北省武漢市武昌區(qū)2026屆數(shù)學高一上期末調(diào)研模擬試題含解析_第4頁
湖北省武漢市武昌區(qū)2026屆數(shù)學高一上期末調(diào)研模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

湖北省武漢市武昌區(qū)2026屆數(shù)學高一上期末調(diào)研模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.命題“”否定是()A. B.C. D.2.已知,則下列結論中正確的是()A.的最大值為 B.在區(qū)間上單調(diào)遞增C.的圖象關于點對稱 D.的最小正周期為3.若函數(shù),則()A. B.C. D.4.下列函數(shù)中,以為最小正周期且在區(qū)間上單調(diào)遞減的是()A. B.C. D.5.已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},則()A.{-1} B.{0,1}C.{-1,2,3} D.{-1,0,1,3}6.已知點位于第二象限,那么角所在的象限是A.第一象限 B.第二象限C.第三象限 D.第四象限7.要證明命題“所有實數(shù)的平方都是正數(shù)”是假命題,只需()A.證明所有實數(shù)的平方都不是正數(shù)B.證明平方是正數(shù)的實數(shù)有無限多個C.至少找到一個實數(shù),其平方是正數(shù)D.至少找到一個實數(shù),其平方不是正數(shù)8.集合,,則P∩M等于A. B.C. D.9.冪函數(shù)f(x)的圖象過點(4,2),那么f()的值為()A. B.64C.2 D.10.已知函數(shù),,若存在,使得,則實數(shù)的取值范圍是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知平面向量,,若,則______12.已知是定義在上的奇函數(shù),且為偶函數(shù),對于函數(shù)有下列幾種描述:①是周期函數(shù);②是它的一條對稱軸;③是它圖象的一個對稱中心;④當時,它一定取最大值;其中描述正確的是__________13.在三棱柱中,各棱長相等,側棱垂直于底面,點是側面的中心,則與平面所成角的大小是______.14.在中,已知,則______.15.函數(shù)恒過定點為__________16.在區(qū)間上隨機取一個實數(shù),則事件發(fā)生的概率為_________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知向量m=(cos,sin),n=(2+sinx,2-cos),函數(shù)=m·n,x∈R.(1)求函數(shù)的最大值;(2)若且=1,求的值.18.已知函數(shù)(1)寫出函數(shù)單調(diào)遞減區(qū)間和其圖象的對稱軸方程;(2)用五點法作圖,填表并作出在圖象.xy19.已知函數(shù).(Ⅰ)求的單調(diào)區(qū)間;(Ⅱ)求函數(shù)的對稱軸和對稱中心.20.已知圓的圓心在直線上,半徑為,且圓經(jīng)過點和點①求圓的方程②過點的直線截圖所得弦長為,求直線的方程21.在密閉培養(yǎng)環(huán)境中,某類細菌的繁殖在初期會較快,隨著單位體積內(nèi)細菌數(shù)量的增加,繁殖速度又會減慢.在一次實驗中,檢測到這類細菌在培養(yǎng)皿中的數(shù)量(單位:百萬個)與培養(yǎng)時間(單位:小時)的關系為:根據(jù)表格中的數(shù)據(jù)畫出散點圖如下:為了描述從第小時開始細菌數(shù)量隨時間變化的關系,現(xiàn)有以下三種模型供選擇:①,②,③(1)選出你認為最符合實際的函數(shù)模型,并說明理由;(2)利用和這兩組數(shù)據(jù)求出你選擇的函數(shù)模型的解析式,并預測從第小時開始,至少再經(jīng)過多少個小時,細菌數(shù)量達到百萬個

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】根據(jù)全稱命題的否定為特稱命題,即可得到答案【詳解】全稱命題的否定為特稱命題,命題“”的否定是,故選:A2、B【解析】利用輔助角公式可得,根據(jù)正弦型函數(shù)最值、單調(diào)性、對稱性和最小正周期的求法依次判斷各個選項即可.【詳解】;對于A,,A錯誤;對于B,當時,,由正弦函數(shù)在上單調(diào)遞增可知:在上單調(diào)遞增,B正確;對于C,當時,,則關于成軸對稱,C錯誤;對于D,最小正周期,D錯誤.故選:B.3、C【解析】應用換元法求函數(shù)解析式即可.【詳解】令,則,所以,即.故選:C4、B【解析】根據(jù)正弦、余弦、正切函數(shù)的周期性和單調(diào)性逐一判斷即可得出答案.【詳解】解:對于A,函數(shù)的最小正周期為,不符合題意;對于B,函數(shù)的最小正周期為,且在區(qū)間上單調(diào)遞減,符合題意;對于C,函數(shù)的最小正周期為,且在區(qū)間上單調(diào)遞增,不符合題意;對于D,函數(shù)的最小正周期為,不符合題意.故選:B.5、C【解析】由交集與補集的定義即可求解.【詳解】解:因為集合A={0,1,2},B={-1,0,1},所以,又全集U={-1,0,1,2,3},所以,故選:C.6、C【解析】通過點所在象限,判斷三角函數(shù)的符號,推出角所在的象限.【詳解】點位于第二象限,可得,,可得,,角所在的象限是第三象限故選C.【點睛】本題考查三角函數(shù)的符號的判斷,是基礎題.第一象限所有三角函數(shù)值均為正,第二象限正弦為正,其它為負,第三象限正切為正,其它為負,第四象限余弦為正,其它為負.7、D【解析】全稱命題是假命題,則其否定一定是真命題,判斷選項.【詳解】命題“所有實數(shù)的平方都是正數(shù)”是全稱命題,若其為假命題,那么命題的否定是真命題,所以只需“至少找到一個實數(shù),其平方不是正數(shù).故選:D8、C【解析】先求出集合M和集合P,根據(jù)交集的定義,即得?!驹斀狻坑深}得,,則.故選:C【點睛】求兩個集合的交集并不難,要注意集合P是整數(shù)集。9、A【解析】設出冪函數(shù),求出冪函數(shù)代入即可求解.【詳解】設冪函數(shù)為,且圖象過點(4,2),解得,所以,,故選:A【點睛】本題考查冪函數(shù),需掌握冪函數(shù)的定義,屬于基礎題.10、D【解析】根據(jù)條件求出兩個函數(shù)在上的值域,結合若存在,使得,等價為兩個集合有公共元素,然后根據(jù)集合關系進行求解即可【詳解】當時,,即,則的值域為[0,1],當時,,則的值域為,因為存在,使得,則若,則或,得或,則當時,,即實數(shù)a的取值范圍是,A,B,C錯,D對.故選:D二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】求出,根據(jù),即,進行數(shù)量積的坐標運算,列出方程,即可求解【詳解】由題意知,平面向量,,則;因為,所以,解得故答案為【點睛】本題主要考查了向量的坐標運算,以及向量的數(shù)量積的應用,其中解答中根據(jù)平面向量垂直的條件,得到關于的方程是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.12、①③【解析】先對已知是定義在的奇函數(shù),且為偶函數(shù)用定義轉化為恒等式,再由兩個恒等式進行合理變形得出與四個命題有關的結論,通過推理證得①③正確.【詳解】因為為偶函數(shù),所以,即是它的一條對稱軸;又因為是定義在上的奇函數(shù),所以,即,則,,即是周期函數(shù),即①正確;因為是它的一條對稱軸且,所以()是它的對稱軸,即②錯誤;因為函數(shù)是奇函數(shù)且是以為周期周期函數(shù),所以,所以是它圖象的一個對稱中心,即③正確;因為是它的一條對稱軸,所以當時,函數(shù)取得最大值或最小值,即④不正確.故答案為:①③.13、60°【解析】取BC的中點E,則,則即為所求,設棱長為2,則,14、11【解析】由.15、【解析】當時,,故恒過點睛:函數(shù)圖象過定點問題,主要有指數(shù)函數(shù)過定點,對數(shù)函數(shù)過定點,冪函數(shù)過點,注意整體思維,整體賦值求解16、【解析】由得:,∵在區(qū)間上隨機取實數(shù),每個數(shù)被取到的可能性相等,∴事件發(fā)生的概率為,故答案為考點:幾何概型三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)f(x)的最大值是4(2)-【解析】(1)先由向量的數(shù)量積坐標表示得到函數(shù)的三角函數(shù)解析式,再將其化簡得到f(x)=4sin(x∈R),最大值易得;(2)若且=1,,解三角方程求出符合條件的x的三角函數(shù)值,再有余弦的和角公式求的值【詳解】(1)因為f(x)=m·n=cosx(2+sinx)+sinx·(2-cosx)=2(sinx+cosx)=4sin(x∈R),所以f(x)的最大值是4.(2)因為f(x)=1,所以sin=.又因為x∈,即x+∈.所以cos=-cos=cos.=coscos-sinsin=-×-×=-.【點睛】本題考查平面向量的綜合題18、(1)遞減區(qū)間,對稱軸方程:;(2)見解析【解析】(1)由正弦型函數(shù)的單調(diào)性與對稱性即可求得的單調(diào)區(qū)間與對稱軸;(2)根據(jù)五點作圖法規(guī)則補充表格,然后在所給坐標中描出所取五點,以光滑曲線連接即可.【詳解】(1)令,解得,令,解得,所以函數(shù)的遞減區(qū)間為,對稱軸方程:;(2)0xy131-11【點睛】本題考查正弦型函數(shù)的單調(diào)性與對稱性,五點法作正(余)弦型函數(shù)的圖像,屬于基礎題.19、(1)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為:;(2)對稱中心為:,對稱軸方程為:.【解析】詳解】試題分析:(1)將看作一個整體,根據(jù)余弦函數(shù)的單調(diào)區(qū)間求解即可.(2)將看作一個整體,根據(jù)余弦函數(shù)的對稱中心和對稱軸建立方程可求得函數(shù)的對稱軸和對稱中心試題解析:(1)由,得,∴函數(shù)的單調(diào)遞增區(qū)間為;由,得,∴函數(shù)的單調(diào)遞減區(qū)間為(2)令,得,∴函數(shù)圖象的對稱軸方程為:.令,得,∴函數(shù)圖象的對稱中心為.20、①.②.或【解析】①.由題意設出圓心坐標,結合圓經(jīng)過的點得到方程組,求解方程組計算可得圓的方程為②.分類討論直線的斜率存在和斜率不存在兩種情況可得直線的方程為或試題解析:①由題意可知,設圓心為則圓為:,∵圓過點和點,∴,則即圓的方程為②設直線的方程為即,∵過點的直線截圖所得弦長為,∴,則當直線的斜率不存在時,直線為,此時弦長為符合題意,即直線的方程為或21、(1),理由見解析;(2),至少再經(jīng)過小時,細菌數(shù)量達到百萬個【解析】(1)分析可知,所選函數(shù)必須滿足三個條件:(?。┒x域包含;(ⅱ)增函數(shù);(ⅲ)隨著自變量的增加,函數(shù)值的增長速度變?。畬Ρ热齻€函數(shù)模型可得結論

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論