2026屆西藏山南地區(qū)第二高級(jí)中學(xué)高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測(cè)模擬試題含解析_第1頁(yè)
2026屆西藏山南地區(qū)第二高級(jí)中學(xué)高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測(cè)模擬試題含解析_第2頁(yè)
2026屆西藏山南地區(qū)第二高級(jí)中學(xué)高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測(cè)模擬試題含解析_第3頁(yè)
2026屆西藏山南地區(qū)第二高級(jí)中學(xué)高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測(cè)模擬試題含解析_第4頁(yè)
2026屆西藏山南地區(qū)第二高級(jí)中學(xué)高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測(cè)模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2026屆西藏山南地區(qū)第二高級(jí)中學(xué)高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測(cè)模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.過(guò)點(diǎn)(-2,1)的直線中,被圓x2+y2-2x+4y=0截得的弦最長(zhǎng)的直線的方程是()A.x+y+1=0 B.x+y-1=0C.x-y+1=0 D.x-y-1=02.如圖是一水平放置的青花瓷.它的外形為單葉雙曲面,可看成是雙曲線的一部分繞其虛軸旋轉(zhuǎn)所形成的曲面,且其外形上下對(duì)稱.花瓶的最小直徑為,瓶口直徑為,瓶高為,則該雙曲線的虛軸長(zhǎng)為()A. B.C. D.453.“”是“方程表示橢圓”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件4.已知點(diǎn),,若直線過(guò)點(diǎn)且與線段相交,則直線的斜率的取值范圍是()A. B.C. D.5.已知三棱柱中,,,D點(diǎn)是線段上靠近A的一個(gè)三等分點(diǎn),則()A. B.C. D.6.已知直線m經(jīng)過(guò),兩點(diǎn),則直線m的斜率為()A.-2 B.C. D.27.若數(shù)列的通項(xiàng)公式為,則該數(shù)列的第5項(xiàng)為()A. B.C. D.8.已知,為雙曲線的兩個(gè)焦點(diǎn),點(diǎn)P在雙曲線上且滿足,那么點(diǎn)P到x軸的距離為()A. B.C. D.9.已知函數(shù),若,則等于()A. B.1C.ln2 D.e10.已知雙曲線的左焦點(diǎn)為,,為雙曲線的左、右頂點(diǎn),漸近線上的一點(diǎn)滿足,且,則雙曲線的離心率為()A. B.C. D.11.已知等比數(shù)列的前3項(xiàng)和為3,,則()A. B.4C. D.112.在四面體OABC中,點(diǎn)M在線段OA上,且,N為BC中點(diǎn),已知,,,則等于()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某校開展“讀書月”朗誦比賽,9位評(píng)委為選手A給出的分?jǐn)?shù)如右邊莖葉圖所示.記分員在去掉一個(gè)最高分和一個(gè)最低分后算得平均分為91,復(fù)核員在復(fù)核時(shí)發(fā)現(xiàn)有一個(gè)數(shù)字(莖葉圖中的x)無(wú)法看清,若記分員計(jì)算無(wú)誤,則數(shù)字x應(yīng)該是___________.選手A87899924x1514.設(shè)函數(shù)滿足,則______.15.古希臘著名數(shù)學(xué)家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現(xiàn):“平面內(nèi)到兩個(gè)定點(diǎn)A、B的距離之比為定值(且)的點(diǎn)的軌跡是圓”.后來(lái)人們將這個(gè)圓以他的名字命名,稱為阿波羅尼斯圓,簡(jiǎn)稱阿氏圓,在平面直角坐標(biāo)系中,,,點(diǎn)滿足,則點(diǎn)P的軌跡方程為__________.(答案寫成標(biāo)準(zhǔn)方程),的最小值為___________.16.已知雙曲線的左右焦點(diǎn)分別為,過(guò)點(diǎn)的直線交雙曲線右支于A,B兩點(diǎn),若是等腰三角形,且,則的面積為___________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)數(shù)列滿足(1)求的通項(xiàng)公式;(2)記數(shù)列的前項(xiàng)和為,是否存在實(shí)數(shù),使得對(duì)任意恒成立.18.(12分)在數(shù)列中,,且.(1)證明;數(shù)列是等比數(shù)列.(2)若,求數(shù)列的前n項(xiàng)和.19.(12分)如圖,在四棱錐中,平面ABCD,,,且,,.(1)求證:平面PAC;(2)已知點(diǎn)M是線段PD上的一點(diǎn),且,當(dāng)三棱錐的體積為1時(shí),求實(shí)數(shù)的值.20.(12分)已知函數(shù)(e為自然對(duì)數(shù)的底數(shù)),(),.(1)若直線與函數(shù),的圖象都相切,求a的值;(2)若方程有兩個(gè)不同的實(shí)數(shù)解,求a的取值范圍.21.(12分)如圖1,在邊長(zhǎng)為4的等邊三角形ABC中,D,E,F(xiàn)分別是AB,AC,BC的中點(diǎn),沿DE把折起,得到如圖2所示的四棱錐.(1)證明:平面.(2)若二面角的大小為60°,求平面與平面的夾角的大小.22.(10分)已知是奇函數(shù).(1)求的值;(2)若,求的值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】當(dāng)直線被圓截得的最弦長(zhǎng)最大時(shí),直線要經(jīng)過(guò)圓心,即圓心在直線上,然后根據(jù)兩點(diǎn)式方程可得所求【詳解】由題意得,圓的方程為,∴圓心坐標(biāo)為∵直線被圓截得的弦長(zhǎng)最大,∴直線過(guò)圓心,又直線過(guò)點(diǎn)(-2,1),所以所求直線的方程為,即故選:A2、C【解析】設(shè)雙曲線方程為,,由已知可得,并求得雙曲線上一點(diǎn)的坐標(biāo),把點(diǎn)的坐標(biāo)代入雙曲線方程,求解,即可得到雙曲線的虛軸長(zhǎng)【詳解】設(shè)點(diǎn)是雙曲線與截面的一個(gè)交點(diǎn),設(shè)雙曲線的方程為:,花瓶的最小直徑,則,由瓶口直徑為,瓶高為,可得,故,解得,該雙曲線的虛軸長(zhǎng)為故選:3、B【解析】根據(jù)方程表示橢圓,且2,再判斷必要不充分條件即可.【詳解】解:方程表示橢圓滿足,解得,且2所以“”是“方程表示橢圓”的必要不充分條件.故選:B4、B【解析】直接利用兩點(diǎn)間的坐標(biāo)公式和直線的斜率的關(guān)系求出結(jié)果【詳解】解:直線過(guò)點(diǎn)且斜率為,與連接兩點(diǎn),的線段有公共點(diǎn),由圖,可知,,當(dāng)時(shí),直線與線段有交點(diǎn)故選:B5、A【解析】在三棱柱中,,轉(zhuǎn)化為結(jié)合已知條件計(jì)算即可.【詳解】在三棱柱中,滿足,且,則,,D點(diǎn)是線段上靠近A的一個(gè)三等分點(diǎn),則,由向量的減法運(yùn)算得,.故選:A【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:在三棱柱中,,由向量的減法運(yùn)算得,再展開利用數(shù)量積運(yùn)算.6、A【解析】根據(jù)斜率公式求得正確答案.【詳解】直線的斜率為:.故選:A7、C【解析】直接根據(jù)通項(xiàng)公式,求;【詳解】,故選:C8、D【解析】設(shè),由雙曲線的性質(zhì)可得的值,再由,根據(jù)勾股定理可得的值,進(jìn)而求得,最后利用等面積法,即可求解【詳解】設(shè),,為雙曲線的兩個(gè)焦點(diǎn),設(shè)焦距為,,點(diǎn)P在雙曲線上,,,,,,的面積為,利用等面積法,設(shè)的高為,則為點(diǎn)P到x軸的距離,則,故選:D【點(diǎn)睛】本題考查雙曲線的性質(zhì),難度不大.9、D【解析】求導(dǎo),由得出.【詳解】,故選:D10、C【解析】由雙曲線的漸近線方程和兩點(diǎn)的距離公式,求得點(diǎn)的坐標(biāo)和,在中,利用余弦定理,求得的關(guān)系式,再由離心率公式,計(jì)算即可求解.【詳解】由題意,雙曲線,可得,設(shè)在漸近線上,且點(diǎn)在第一象限內(nèi),由,解得,即點(diǎn),所以,在中,由余弦定理可得,可得,即,所以雙曲線離心率為.故選:C.【點(diǎn)睛】求解橢圓或雙曲線的離心率的三種方法:1、定義法:通過(guò)已知條件列出方程組,求得得值,根據(jù)離心率的定義求解離心率;2、齊次式法:由已知條件得出關(guān)于的二元齊次方程,然后轉(zhuǎn)化為關(guān)于的一元二次方程求解;3、特殊值法:通過(guò)取特殊值或特殊位置,求出離心率.11、D【解析】設(shè)等比數(shù)列公比為,由已知結(jié)合等比數(shù)列的通項(xiàng)公式可求得,,代入即可求得結(jié)果.【詳解】設(shè)等比數(shù)列的公比為,由,得即,又,即又,,解得又等比數(shù)列的前3項(xiàng)和為3,故,即,解得故選:D12、B【解析】根據(jù)空間向量基本定理結(jié)合已知條件求解【詳解】因?yàn)镹為BC中點(diǎn),所以,因?yàn)镸在線段OA上,且,所以,所以,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】根據(jù)題意分和兩種情況討論,再根據(jù)平均分公式計(jì)算即可得出答案.【詳解】解:當(dāng)時(shí),則去掉的最低分?jǐn)?shù)為87分,最高分?jǐn)?shù)為95分,則,所以,當(dāng)時(shí),則去掉的最低分?jǐn)?shù)為87分,最高分?jǐn)?shù)為分,則平均分為,與題意矛盾,綜上.故答案為:4.14、5【解析】考點(diǎn):函數(shù)導(dǎo)數(shù)與求值15、①.②.【解析】設(shè)點(diǎn)P坐標(biāo),然后用直接法可求;根據(jù)軌跡方程和數(shù)量積的坐標(biāo)表示對(duì)化簡(jiǎn),結(jié)合軌跡方程可得x的范圍,然后可解.【詳解】設(shè)P點(diǎn)坐標(biāo)為,則由,得,化簡(jiǎn)得,即.因?yàn)椋砸驗(yàn)辄c(diǎn)P在圓上,故所以,故的最小值為.故答案為:,16、【解析】根據(jù)題意可知,,再結(jié)合,即可求出各邊,從而求出的面積【詳解】,所以,而是的等腰三角形,所以,故的面積為故答案為:三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)存在【解析】(1)利用“退作差”法求得的通項(xiàng)公式.(2)利用裂項(xiàng)求和法求得,由此求得.【小問(wèn)1詳解】依題意①,當(dāng)時(shí),.當(dāng)時(shí),②,①-②得,,時(shí),上式也符合.所以.【小問(wèn)2詳解】.所以.故存在實(shí)數(shù),使得對(duì)任意恒成立.18、(1)證明見解析;(2).【解析】(1)根據(jù)遞推公式,結(jié)合等差數(shù)列的定義、等比數(shù)列的定義進(jìn)行證明即可;(2)運(yùn)用裂項(xiàng)相消法進(jìn)行求解即可.【小問(wèn)1詳解】∵,∴,又∵,∴,∴數(shù)列是首項(xiàng)為0,公差為1的等差數(shù)列,∴,∴,從而,∴數(shù)列是首項(xiàng)為2,公比為2的等比數(shù)列;【小問(wèn)2詳解】由(1)知,則,∴,∴.19、(1)證明見解析(2)3【解析】(1)證明出,且,從而證明出線面垂直;(2)先用椎體體積公式求出,利用體積之比得到線段之比,從而得到的值.【小問(wèn)1詳解】證明:∵平面ABCD,且平面ABCD,∴.又因?yàn)椋?,∴四邊形ABCD為直角梯形.又因?yàn)?,,易得,,∴,?又因?yàn)锳C,PA是平面PAC的兩條相交直線,∴平面PAC.【小問(wèn)2詳解】由(1)知且,∴.又∵平面ABCD,.又∵,∴,∴點(diǎn)M到平面ABC的距離為,∴,∴.20、(1);(2).【解析】(1)根據(jù)導(dǎo)數(shù)的幾何意義進(jìn)行求解即可;(2)利用常變量分離法,通過(guò)構(gòu)造新函數(shù),由方程有兩個(gè)不同的實(shí)數(shù)解問(wèn)題,轉(zhuǎn)化為兩個(gè)函數(shù)的圖象有兩個(gè)交點(diǎn)問(wèn)題,利用導(dǎo)數(shù)進(jìn)行求解即可.【小問(wèn)1詳解】設(shè)曲線的切點(diǎn)坐標(biāo)為,由,所以過(guò)該切點(diǎn)的切線的斜率為,因此該切線方程為:,因?yàn)橹本€與函數(shù)的圖象相切,所以,因?yàn)橹本€與函數(shù)的圖象相切,且函數(shù)過(guò)原點(diǎn),所以曲線的切點(diǎn)為,于是有,即;【小問(wèn)2詳解】由可得:,當(dāng)時(shí),顯然不成立,當(dāng)時(shí),由,設(shè)函數(shù),,,當(dāng)時(shí),,單調(diào)遞減,當(dāng)時(shí),,單調(diào)遞減,當(dāng)時(shí),,單調(diào)遞增,因此當(dāng)時(shí),函數(shù)有最小值,最小值為,而,當(dāng)時(shí),,函數(shù)圖象如下圖所示:方程有兩個(gè)不同的實(shí)數(shù)解,轉(zhuǎn)化為函數(shù)和函數(shù)的圖象,在當(dāng)時(shí),有兩個(gè)不同的交點(diǎn),由圖象可知:,故a的取值范圍為.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:利用常變量分離法,結(jié)合轉(zhuǎn)化法進(jìn)行求解是解題的關(guān)鍵.21、(1)證明見解析;(2).【解析】(1)由結(jié)合線面平行的判定即可推理作答.(2)取DE的中點(diǎn)M,連接,F(xiàn)M,證明平面平面,再建立空間直角坐標(biāo)系,借助空間向量推理、計(jì)算作答.【小問(wèn)1詳解】在中,因?yàn)镋,F(xiàn)分別是AC,BC的中點(diǎn),所以,則圖2中,,而平面,平面,所以平面.【小問(wèn)2詳解】依題意,是正三角形,四邊形是菱形,取DE的中點(diǎn)M,連接,F(xiàn)M,如圖,則,,即是二面角的平面角,,取中點(diǎn)N,連接,則有,在中,由余弦定理得:,于是有,,即,而,,,平面,則平面,又平面,從而有平面平面,因平面平面,平面,因此,平面,過(guò)點(diǎn)N作,則兩兩垂直,以點(diǎn)N為原點(diǎn),射線分別為x,y,z軸非負(fù)半軸建立空間直角坐標(biāo)系,則,,,,,,,設(shè)平面的法向量,則,令,得,設(shè)平面的法向量,則,令,得,顯然有,即,所以平面與平面的夾角為.【點(diǎn)睛】方法點(diǎn)睛:利用向量法求二面角:(1)找法向量,分別求出兩個(gè)半平面所在平面的法向量,然后求得法向量的夾角,結(jié)合圖形得到

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論