湖南省十四校聯(lián)考2026屆高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測模擬試題含解析_第1頁
湖南省十四校聯(lián)考2026屆高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測模擬試題含解析_第2頁
湖南省十四校聯(lián)考2026屆高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測模擬試題含解析_第3頁
湖南省十四校聯(lián)考2026屆高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測模擬試題含解析_第4頁
湖南省十四校聯(lián)考2026屆高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

湖南省十四校聯(lián)考2026屆高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,雙曲線,是圓的一條直徑,若雙曲線過,兩點(diǎn),且離心率為,則直線的方程為()A. B.C. D.2.在區(qū)間內(nèi)隨機(jī)地取出兩個數(shù),則兩數(shù)之和小于的概率是()A. B.C. D.3.已知正三棱柱的側(cè)棱長與底面邊長相等,則AB1與側(cè)面ACC1A1所成角的正弦值等于A. B.C. D.4.如圖,在正方體ABCD-EFGH中,P在棱BC上,BP=x,平行于BD的直線l在正方形EFGH內(nèi),點(diǎn)E到直線l的距離記為d,記二面角為A-l-P為θ,已知初始狀態(tài)下x=0,d=0,則()A.當(dāng)x增大時,θ先增大后減小 B.當(dāng)x增大時,θ先減小后增大C.當(dāng)d增大時,θ先增大后減小 D.當(dāng)d增大時,θ先減小后增大5.已知函數(shù),則函數(shù)在區(qū)間上的最小值為()A. B.C. D.6.已知拋物線,為坐標(biāo)原點(diǎn),以為圓心的圓交拋物線于、兩點(diǎn),交準(zhǔn)線于、兩點(diǎn),若,,則拋物線方程為()A. B.C. D.7.傾斜角為45°,在y軸上的截距為-1的直線方程是()A.x-y+1=0 B.x-y-1=0C.x+y-1=0 D.x+y+1=08.已知等差數(shù)列且,則數(shù)列的前13項(xiàng)之和為()A.26 B.39C.104 D.529.直線的傾斜角為()A.0 B.C. D.10.在條件下,目標(biāo)函數(shù)的最大值為2,則的最小值是()A.20 B.40C.60 D.8011.拋物線的焦點(diǎn)到準(zhǔn)線的距離為()A. B.C. D.112.接種疫苗是預(yù)防控制新冠疫情最有效的方法,我國自2021年1月9日起實(shí)施全民免費(fèi)接種新冠疫苗并持續(xù)加快推進(jìn)接種工作.某地為方便居民接種,共設(shè)置了A、B、C三個新冠疫苗接種點(diǎn),每位接種者可去任一個接種點(diǎn)接種.若甲、乙兩人去接種新冠疫苗,則兩人不在同一接種點(diǎn)接種疫苗的概率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,四邊形為直角梯形,且,為正方形,且平面平面,,,,則______,直線與平面所成角的正弦值為______14.設(shè)拋物線C:的焦點(diǎn)為F,準(zhǔn)線l與x軸的交點(diǎn)為M,P是C上一點(diǎn),若|PF|=5,則|PM|=__.15.拋物線的焦點(diǎn)坐標(biāo)為__________16.直線l:y=-x+m與曲線有兩個公共點(diǎn),則實(shí)數(shù)m的取值范圍是_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知直線l經(jīng)過兩條直線2x﹣y﹣3=0和4x﹣3y﹣5=0交點(diǎn),且與直線x+y﹣2=0垂直(1)求直線l的方程;(2)若圓C過點(diǎn)(1,0),且圓心在x軸的正半軸上,直線l被該圓所截得的弦長為,求圓C的標(biāo)準(zhǔn)方程18.(12分)如圖,在三棱錐中,,,記二面角的平面角為(1)若,,求三棱錐的體積;(2)若M為BC的中點(diǎn),求直線AD與EM所成角的取值范圍19.(12分)在中,,,的對邊分別是,,,已知.(1)求;(2)若,且的面積為4,求的周長20.(12分)如圖,四棱錐中,是邊長為2的正三角形,底面為菱形,且平面平面,,為上一點(diǎn),滿足.(1)證明:;(2)求二面角的余弦值.21.(12分)已知橢圓:的一個焦點(diǎn)與曲線的焦點(diǎn)重合,且離心率為.(1)求橢圓的方程(2)設(shè)直線:交橢圓于M,N兩點(diǎn).①若且的面積為,求的值.②若軸上的任意一點(diǎn)到直線與直線(為橢圓的右焦點(diǎn))的距離相等,求證:直線恒過定點(diǎn),并求出該定點(diǎn)坐標(biāo)22.(10分)已知橢圓:的左、右焦點(diǎn)分別為,,離心率等于,點(diǎn),且的面積等于(1)求橢圓的標(biāo)準(zhǔn)方程;(2)已知斜率存在且不為0的直線與橢圓交于A,B兩點(diǎn),當(dāng)點(diǎn)A關(guān)于y軸的對稱點(diǎn)在直線PB上時,直線是否過定點(diǎn)?若過定點(diǎn),求出此定點(diǎn);若不過,請說明理由

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】由離心率求得,設(shè)出兩點(diǎn)坐標(biāo)代入雙曲線方程相減求得直線斜率與的關(guān)系得結(jié)論【詳解】由題意,則,即,由圓方程知,設(shè),,則,,又,兩式相減得,所以,直線方程為,即故選:D2、C【解析】利用幾何概型的面積型,確定兩數(shù)之和小于的區(qū)域,進(jìn)而根據(jù)面積比求概率.【詳解】由題意知:若兩個數(shù)分別為,則,如上圖示,陰影部分即為,∴兩數(shù)之和小于的概率.故選:C3、C【解析】過作,連接,由于,故平面,所以所求直線與平面所成的角為,設(shè)棱長為,則,故,.點(diǎn)睛:本題主要考查空間立體幾何直線與平面的位置關(guān)系,考查直線與平面所成的角,考查線面垂直的證明方法和常見幾何體的結(jié)構(gòu)特征.由于題目所給幾何體為直三棱柱,故側(cè)棱和底面垂直,這是一個重要的隱含條件,通過作交線的垂線,即可得到高,由此作出二面角的平面角.4、C【解析】以F為坐標(biāo)原點(diǎn),F(xiàn)B,F(xiàn)G,F(xiàn)E所在直線為x軸,y軸,z軸建立空間直角坐標(biāo)系,設(shè)正方體的棱長為2,則P(2,x,0),A(2,0,2),設(shè)直線l與EF,EH交于點(diǎn)M、N,,求得平面AMN的法向量為,平面PMN的法向量,由空間向量的夾角公式表示出,對于A,B選項(xiàng),令d=0,則,由函數(shù)的單調(diào)性可判斷;對于C,D,當(dāng)x=0時,則,令,利用導(dǎo)函數(shù)研究函數(shù)的單調(diào)性可判斷.【詳解】解:由題意,以F為坐標(biāo)原點(diǎn),F(xiàn)B,F(xiàn)G,F(xiàn)E所在直線為x軸,y軸,z軸建立空間直角坐標(biāo)系如圖所示,設(shè)正方體的棱長為2,則P(2,x,0),A(2,0,2),設(shè)直線l與EF,EH交于點(diǎn)M、N,則,所以,,設(shè)平面AMN的法向量為,則,即,令,則,設(shè)平面PMN的法向量為,則,即,令,則,,對于A,B選項(xiàng),令d=0,則,顯示函數(shù)在是為減函數(shù),即減小,則增大,故選項(xiàng)A,B錯誤;對于C,D,對于給定的,如圖,過作,垂足為,過作,垂足為,過作,垂足為,當(dāng)在下方時,,設(shè),則對于給定的,為定值,此時設(shè)二面角為,二面角為,則二面角為,且,故,而,故即,當(dāng)時,為減函數(shù),故為增函數(shù),當(dāng)時,為增函數(shù),故為減函數(shù),故先增后減,故D錯誤.當(dāng)在上方時,,則對于給定的,為定值,則有二面角為,且,因,故為增函數(shù),故為減函數(shù),綜上,對于給定的,隨的增大而減少,故選:C.5、B【解析】根據(jù)已知條件求得以及,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,即可求得函數(shù)在區(qū)間上的最小值.【詳解】因?yàn)椋士傻?,則,又,令,解得,令,解得,故在單調(diào)遞減,在單調(diào)遞增,又,故在區(qū)間上的最小值為.故選:.6、C【解析】設(shè)圓的半徑為,根據(jù)已知條件可得出關(guān)于的方程,求出正數(shù)的值,即可得出拋物線的方程.【詳解】設(shè)圓的半徑為,拋物線的準(zhǔn)線方程為,由勾股定理可得,因?yàn)椋瑢⒋霋佄锞€方程得,可得,不妨設(shè)點(diǎn),則,所以,,解得,因此,拋物線的方程為.故選:C.7、B【解析】由題意,,所以,即,故選B8、A【解析】根據(jù)等差數(shù)列的性質(zhì)化簡已知條件可得的值,再由等差數(shù)列前項(xiàng)和及等差數(shù)列的性質(zhì)即可求解.【詳解】由等差數(shù)列的性質(zhì)可得:,,所以由可得:,解得:,所以數(shù)列的前13項(xiàng)之和為,故選:A9、D【解析】根據(jù)斜率與傾斜角的關(guān)系求解即可.【詳解】由題的斜率,故傾斜角的正切值為,又,故.故選:D.10、C【解析】首先畫出可行域,找到最優(yōu)解,得到關(guān)系式作為條件,再去求的最小值.【詳解】畫出的可行域,如下圖:由得由得;由得;目標(biāo)函數(shù)取最大值時必過N點(diǎn),則則(當(dāng)且僅當(dāng)時等號成立)故選:C11、B【解析】由可得拋物線標(biāo)椎方程為:,由焦點(diǎn)和準(zhǔn)線方程即可得解.【詳解】由可得拋物線標(biāo)準(zhǔn)方程為:,所以拋物線的焦點(diǎn)為,準(zhǔn)線方程為,所以焦點(diǎn)到準(zhǔn)線的距離為,故選:B【點(diǎn)睛】本題考了拋物線標(biāo)準(zhǔn)方程,考查了焦點(diǎn)和準(zhǔn)線相關(guān)基本量,屬于基礎(chǔ)題.12、C【解析】利用古典概型的概率公式可求出結(jié)果【詳解】由題知,基本事件總數(shù)為甲、乙兩人不在同一接種點(diǎn)接種疫苗的基本事件數(shù)為由古典概型概率計算公式可得所求概率故選:二、填空題:本題共4小題,每小題5分,共20分。13、①..②..【解析】以點(diǎn)為坐標(biāo)原點(diǎn),,,所在直線分別為軸,軸,軸建立空間直角坐標(biāo)系,根據(jù)空間向量的線性運(yùn)算求得向量的坐標(biāo),由此求得,由線面角的空間向量求解方法求得答案.【詳解】解:以點(diǎn)為坐標(biāo)原點(diǎn),,,所在直線分別為軸,軸,軸建立空間直角坐標(biāo)系(如下圖所示)由題意可知,,,因?yàn)椋?,所以,故設(shè)平面的法向量為,則,令,得因?yàn)?,所以直線與平面所成角的正弦值為故答案為:;.14、【解析】根據(jù)拋物線的性質(zhì)及拋物線方程可求坐標(biāo),進(jìn)而得解.【詳解】由拋物線的方程可得焦點(diǎn),準(zhǔn)線,由題意可得,設(shè),有拋物線的性質(zhì)可得:,解得x=4,代入拋物線的方程可得,所以,故答案為:.15、【解析】化成標(biāo)準(zhǔn)形式,結(jié)合焦點(diǎn)定義即可求解.【詳解】由,得,故拋物線的焦點(diǎn)坐標(biāo)為故答案為:16、【解析】曲線表示圓的右半圓,結(jié)合的幾何意義,得出實(shí)數(shù)m的取值范圍.【詳解】曲線表示圓的右半圓,當(dāng)直線與相切時,,即,由表示直線的截距,因?yàn)橹本€l與曲線有兩個公共點(diǎn),由圖可知,所以.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)先求得直線和直線的交點(diǎn)坐標(biāo),再用點(diǎn)斜式求得直線的方程.(2)設(shè)圓的標(biāo)準(zhǔn)方程為,根據(jù)已知條件列方程組,求得,由此求得圓的標(biāo)準(zhǔn)方程.【小問1詳解】.直線的斜率為,所以直線的斜率為,所以直線的方程為.【小問2詳解】設(shè)圓的標(biāo)準(zhǔn)方程為,則,所以圓的標(biāo)準(zhǔn)方程為.18、(1)(2)【解析】(1)作出輔助線,找到二面角的平面角,利用余弦定理求出,求出底面積和高,進(jìn)而求出三棱錐的體積;(2)利用空間基底表達(dá)出,結(jié)合第一問結(jié)論求出,從而求出答案.【小問1詳解】取AC的中點(diǎn)F,連接FD,F(xiàn)E,由BC=2,則,故DF⊥AC,EF⊥AC,故∠DFE即為二面角的平面角,即,連接DE,作DH⊥FE,因?yàn)?,所以平面DEF,因?yàn)镈H平面DEF,所以AC⊥DH,因?yàn)?,所以DH⊥平面ABC,因?yàn)?,由勾股定理得:,,又,由勾股定理逆定理可知,AE⊥CE,且∠BAC=,,在△ABC中,由余弦定理得:,解得:或(舍去),則,因?yàn)?,,所以△DEF為等邊三角形,則,故三棱錐的體積;【小問2詳解】設(shè),則,,由(1)知:,,取為空間中的一組基底,則,由第一問可知:,則其中,且,,故,由第一問可知,又是的中點(diǎn),所以,所以,因?yàn)槿忮F中,所以,所以,故直線AD與EM所成角范圍為.【點(diǎn)睛】針對于立體幾何中角度范圍的題目,可以建立空間直角坐標(biāo)系來進(jìn)行求解,若不容易建立坐標(biāo)系時,也可以通過基底表達(dá)出各個向量,進(jìn)而求出答案.19、(1)(2)【解析】(1)根據(jù)正弦定理及題中條件,可得,化簡整理,即可求解(2)由的面積為4,結(jié)合(1)中結(jié)論,可得,結(jié)合余弦定理,可得,從而可求的周長【詳解】解:(1)由及正弦定理得,,又,∴,∴,∴.(2)∵的面積為,∴.由余弦定理得,∴.故的周長為.【點(diǎn)睛】本題考查正弦定理應(yīng)用,余弦定理解三角形,三角形面積公式,考查計算化簡的能力,屬基礎(chǔ)題20、(1)證明見解析;(2).【解析】(1)設(shè)為中點(diǎn),連接,根據(jù),證明平面得到答案.(2)以為原點(diǎn),,,分別為,,軸建立空間直角坐標(biāo)系,計算各點(diǎn)坐標(biāo),計算平面和平面的法向量,根據(jù)向量夾角公式計算得到答案.【詳解】(1)設(shè)為中點(diǎn),連接,,∵,∴,又∵底面四邊形為菱形,,∴為等邊三角形,∴,又∴,,平面,∴平面,而平面,∴.(2)∵平面平面,平面平面,,∴平面以為原點(diǎn),,,分別為,,軸建立空間直角坐標(biāo)系,則,,,,,,由,,,即,∴,,,設(shè)為平面的法向量,則由,令,得,,∴,設(shè)為平面的法向量,則由,令,得,,∴,設(shè)二面角的平面角為,則,∴二面角的的余弦值為.【點(diǎn)睛】本題考查了線線垂直,二面角,意在考查學(xué)生的計算能力和空間想象能力,建立空間直角坐標(biāo)系是解題的關(guān)鍵.21、(1)(2)①;②證明見解析,定點(diǎn)的坐標(biāo)為【解析】(1)由所給條件確定基本量即可.(2)①代入消元,韋達(dá)定理整體思想,列出關(guān)于的方程從而得解;②由已知可知,得到關(guān)于、的一次關(guān)系式可得證.【小問1詳解】由已知橢圓的右焦點(diǎn)坐標(biāo)為,,所以,橢圓的方程:【小問2詳解】①將與橢圓方程聯(lián)立得.設(shè),,則,解得,∴,,點(diǎn)到直線的距離為,∴,解得(舍去負(fù)值),∴.②設(shè),,將與橢圓方程聯(lián)立,得,當(dāng)時,∴,,,若軸上任意一點(diǎn)到直線與的距離均相等,則軸為直線與的夾角的平分線,∴,即,∴.∴,解得.∴.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論