版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
TransformingtheAssetEcosystem:
TheRoleofAIin
AssetManagementandServicing
WhitePaper
2
TransformingtheAssetEcosystem:
TheRoleofAIin
AssetManagementandServicing
TableofContent
ExecutiveSummary 4
ResearchMethodology 6
TheNeedforAIinAssetManagementandAssetServicing
8
CurrentStateofAssetManagement 10
AIasaCompanion:CurrentApplicationinAssetManagement 14
BeneitsandChallengesofAIinAssetManagementIndustry 20
FromAmbitiontoImpact:
BuildingtheAugmentedOrganization 24
Contacts 29
3
4
ExecutiveSummary
Whatdoesthefuturelooklikeforassetmanagementandservicingfirms?
Theassetmanagementandservicinglandscapeisbecomingincreasinglycompetitiveastraditionalplayersfacegrowingpressurefrominnovativeintechstartupsthatareredeininghowinancialservicesaredelivered.Facedwithsustainedmarginpressure,complexandevolvingregulations(e.g.,EURetailInvestmentStrategy,MiFID
II,DORA,EUAIAct,…),aswellasrisingclientexpectationsfortransparency,customizedservicesanddigitalinteractions,theseorganizationsmustadaptstructurally,operationally,andtechnologically.
Inthiscontext,ArtiicialIntelligence(AI)cannolongerbeconsideredabreakthroughconcept.Itisbecominganessentialleverfortransformationacrosstheassetmanagementvaluechain—fromportfoliodecisionsupporttooperationalefficiencyandcompliance.AI,asdeinedinthispaper,referstosystemscapableofperformingtasksthattypicallyrequirehumanintelligence,suchasreasoning,learning,decision-making,andnaturallanguage
processing.
Yet,whilethepotentialofAIiswidelyrecognized—92%oforganizationsacknowledgethestrategicimportanceofdigitizationandnewtechnologyintegration—only52%reportpartialAIintegration,andmostremainatthepilotstage.Thegapbetweenambitionandrealityisnotjusttechnical:itreflectsdeeperchallengesrelatedtodatareadiness,regulatorycomplexity,andorganizationaladaptation.Thisobservationisfurtherconirmedbythe2024AIthematicreportfromtheCSSF,whichhighlightsthatalthoughAIadoptionisprogressing,asigniicantportionofLuxembourginancialinstitutionshaveyettoinvestinthesetechnologies.However,thereportalsoanticipatesarisingtrendinlocalinvestments,particularlyingenerativeAI,overthecomingyears—signalingashiftfrom
experimentationtomorestructureddeployment.
OurindingsrevealthatAIisprimarilyusedtodaytoaugmentratherthanreplacehumandecision-making.78%ofirmsdonotuseAIforreal-timedecisions,andinsteadfocusonsupportfunctionsthatenhancejudgment,reduceprocessingtime,andimproveinformationaccess.
Despitethisconservativedeployment,earlyresultsarepromising:
?69%ofrespondentsreportreducedmanualprocessingtimeinpre-tradeactivities;
?55%noteimproveddecisionquality;
?40%reportatleastpartialAIadoptionininvestment-relatedareas.
5
However,theroadtobroaderimplementationisstillmarkedbythreemainconstraints:
1.Dataqualityandinfrastructurelimitations(only9%ofirmshavefullystandardizedandaccessibledata);
2.Limitedinternalexpertise;
3.Budgetaryconstraints,particularlyamongirmsinearlystagesofintegration.
Manyleadingplayersarerespondingbyadoptinghybridmodels,owningthestrategyandexpertisewhile
outsourcingtechnologycomponents,particularlythroughpartnershipswithAIvendors.Commonlyoutsourcedelementsincludepre-trainedAImodelsfordocumentanalysis,cloud-basedinfrastructureformodeldeployment,APIsforgenerativeAI,orintelligentautomationsolutionsforprocessingunstructureddata.Thisallows
organizationstoremainfocusedonvaluecreationwhilebeneitingfromthespeedanddepthofexternalcapabilities.
Maintainingin-houseunderstandingofAIcapabilitiesandtheirimplicationsallowsirmstosteertechnology
adoptioninlinewiththeiroperationalmodels,regulatoryconstraints(notablyEUAIAct),andlong-termstrategicgoals.
Lookingahead,thesuccessofAItransformationwilldependlessontechnologyitselfthanontheabilityto
integrateitmeaningfullywithintheorganization.Researchconirmsthat60%oftransformationsuccessdependsonpeople,versusonly10%ontoolsand30%onprocesses.
FirmsthatsucceedwillbethosethatpositionAIasacollaborativeco-pilot—onethatampliies,ratherthan
replaces,humanexpertise—andembeditintotheiroperatingmodelsinawaythatisscalable,explainable,andalignedwithregulatoryandethicalexpectations.Thisis,however,onlyairststep.Theinalstageistoevolvefroman“augmentedemployee”toan“augmentedorganization”wheretheoperatingmodelistransformedbyputtingdataandAIatitscore.Assuchcapabilitiesandoperationalefficiencyisincreasedandemployeeandcustomer
experiencesarereinvented.Changingthevaluechaininthiswaywillbecomemoreandmoremandatorytostayrelevantinthemarket.
AssetManagement-Inthecontextofthispaper,AssetManagementencompassesbothcoreinvestmentactivities(suchasportfolioconstructionandfundselection)andtheoperationalandadministrativefunctionscommonly
referredtoasassetservicing.Theseincludefundadministration,custody,andrelatedbankingfunctions.
6
Research
Methodology
ThiswhitepaperexaminesAIadoptioninassetmanagementbyassessingorganizations’maturity,collectingexecutives’perspectivesoftheEuropeanmarketandidentifyingtheprerequisitesforbecominganaugmented
organizationwithintheassetmanagementandservicingvaluechain.
DataCollection
Theprimarydataisgatheredthroughaseriesofsemi-structuredinterviewcallsconductedbetweenOctoberandMarch2025.Thesampleincludesmorethan40executivesholdingkeypositions(CEO,COO,CTO,HeadofInnovation,Transformation,PortfolioManagers
andSales)withintheirorganizations.aimingtoreflectstrategicprioritiesandoperationalrealities.
Theparticipatingorganizationscoverarepresentativecross-sectionoftheindustry:
?62%fromassetmanagement-relatedirms,
?19%fromsolutionproviders,oferingperspectiveontechnologydevelopment
?19%frombanks.
Thisvarietyinorganizationensuresperspectiveswerecapturedacrossdiferentdimensionsoftheasset
managementvaluechain.
Theparticipatingorganizationsalsodifersigniicantlyinsize,fromspecializedirmswithfewerthan100
employeestolargeglobalinstitutionswithmore
than10,000.Thisdiversityofersacomprehensive
perspectiveonvariousoperationalcontextsandhelpsidentifytrendsanddiferencesinAIadoptionbasedonorganizationalscale.
TheinterviewsfocusonorganizationsoperatingwithinEurope.withamajoritybasedinLuxembourg,reflectingitsroleasakeyhubforassetmanagementand
servicing.InsightsarealsogatheredfromparticipantsinothermajorEuropeaninancialcenters.
Asemi-structuredapproachisused,combininga
standardizedquestionnairetoensurecomparability
acrossresponses,withopen-endedquestionstoexplorenuances,speciicchallengesandapproachesingreaterdepth.
7
Theinterviewssystematicallyinvestigateseveralcoreareas:
?Perceivedimportanceandcurrentlevelofdigitalization.
?InvestmentandresourceallocationfordigitaltransformationandAI.
?AIimplementationinpre-tradeandpost-tradeactivities.
?Achievedlevelsofautomation.
?Maturityofdatainfrastructure,governance,andcloudadoption.
?FutureinvestmentplansandbarrierstoAIadoption.
?MeasuredandperceivedimpactofAIonefficiencyanddecision-making.
?Qualitativeperspectivesonchallenges,
advantages,andtherolesofserviceprovidersandregulatorsintheAItransformationinasset
management.
Toenrichtheprimaryqualitativedata,theinsightsgatheredfrominterviewswerecross-referencedwithindingsfromleadingindustryreportsandmarketresearchfocusedonAIadoptionwithintheasset
managementsector.
DataAnalysis
Thedatacollectedfollowedamulti-stageanalysisprocess:
?QuantitativeAnalysis:Responsestoscaled
questions(e.g.,maturityratings,budget
allocation,FTEs,impactpercentages)were
aggregatedandanalyzedtoidentifytrends,
levelsofadoption,andperceivedimpactsacrossthesample.
?QualitativeAnalysis:Responsestoopen-endedquestionsanddiscussionpointswereanalyzedtoidentifykeythemes,recurringchallenges,
beneits,usecases,andcommonbarriersrelatedtoAIimplementation.
?ComparativeAnalysis:Resultsweresegmentedbyorganizationtype(AssetManager,Bank,
ServiceProvider,AssetServicer)andsizeto
identifydiferencesinpriorities,maturity,andchallenges.
?Synthesis:Quantitativeandqualitativeindingswerecombinedtodevelopacomprehensive
understandingofthecurrentstateofAIadoptioninassetmanagementandasset
servicinghighlightingrecurringpatterns,
explanatoryinsights,andcommonfactorsforsuccessfulimplementation.
Thisapproachensuresabalanced,data-driven
understandingofthestateofAIinassetmanagementvaluechain,integratingbothnumericalindicators,
executiveperspectivesandthestepstheyaretakingtowardbecomingaugmentedorganizations.
8
TheNeedforAIinAssetManagementandAssetServicing
AIasaDriverofTransformation
AItechnologies—spanningmachinelearning,deep
learning,andgenerativeAI—oferassetmanagementandservicingirms,opportunitiestostreamlineprocesses,optimizedecision-making,anddevelopnewvalue-addedservices.Theconvergenceofgrowingdataavailability,
rapidtechnologicaladvancement,andpressureonproitabilityisacceleratinginterestinAIadoption.
Thesurveyconirmsthisdynamic:83%ofrespondentsexpressinterestinintegratingAIsolutionsintotheir
processes,andresultsrevealaclearcorrelationbetweenAIdeploymentandprogressindigitaltransformation.
TheDigitalMaturityGap
WhileenthusiasmforAIanddigitaltransformationrunshigh,asigniicantgapexistsbetweenambitionandexecution.While92%oforganizationsrecognizetheimportanceofdigitaltransformation,onlya
minorityhavemovedbeyondpilotorpartialAI
implementations.Mostorganizations(52%)remainatthe“partialintegration”stage,while24%arestillinthe“experimentalphase”,testingAI’spotentialincontrolledenvironments.
Thisimplementationgaphighlightspersistent
challengesacrosstheAssetManagementlandscape.
Integrationdifficultieswithlegacysystemscontinue
tohamperprogress.Dataquality,securityand
standardizationissuespreventorganizationsfrom
fullyleveragingtheirinformationassets.Digital
talentacquisitionandretentionremainsigniicant
hurdlesformanyirmsattemptingtoacceleratetheirtransformationjourney.Navigatingtheseobstacles
requiresaclear,strategicapproach–anissuethiswhitepaperseekstoexplore.
9
PurposeofThisWhitePaper
ThiswhitepaperaimstoclarifythestateofAI
adoptionintheassetmanagementsector.Basedon
industrysurveydata,itidentiiescurrenttrends,barrierstoimplementation,andkeystrategicpriorities.ThegoalistoprovideAssetManagementirmswithapracticalroadmapfornavigatingthedigitaltransformation
journey,leveragingAIcapabilities,andpositioning
themselvesforlong-termsuccessinacompetitiveandevolvinginancialecosystem.
10
CurrentStateof
AssetManagement
TechnologicalTransformation:GradualandUnequal
Theassetmanagementecosystemisundergoing
atechnologicalshift,drivenbyinnovationslikeAI,
cloudinfrastructure,blockchainandbigdata.These
technologiesarenolongeradoptedinisolationbutareincreasinglyviewedascomplementaryforcesconvergingtoreshapethisindustry.Despitethisdynamic,
transformationremainsunequal.SoftwaretechnologiessuchasRoboticProcessAutomation(RPA)havedeliveredtacticalefficiencies,particularlyinrepetitive,rules-basedtasks.However,deeperautomationremainslimited,
especiallyforprocessingunstructureddata.These
tacticalimprovementsremainlimited,especiallygiventhecontinuedrelianceonoldandcostlylegacysystems.
TheintegrationofAI,despiteamarkedinterestwith83%ofrespondentswishingtointegrateit,remainsembryonicinitsmostcriticalapplications.Most
applicationsinvolvehigh-stakesdecision-making,orsensitivedata,whichsuggestslimitationsincurrentAIcapabilitiesfortheassetmanagementandservicesindustry.Thisfurtherillustratesthelimitationsofreal-timeAIdecision-making,particularlyinhigh-stakesorsensitivecontexts,with78%ofrespondentsindicatingnotusingAIforsuchpurposesnorinpre-tradeorposttradeactivities.
AIintegrationinpre-tradeandpost-trade
activitiesisstillconstrainedbyinadequate
technologicalinfrastructure,limiteddata
accessibilityandquality,skillsshortages,andbudgetconstraints.
PrimarybarrierstoadvancingAImaturityinrespondentorganization,%ofrespondents
65%
DataAccessibility
58%
LackofTechnical
Expertise
42%
BudgetConstraints
Source:BearingPointsurveyHowisAItransformingassetservicingvaluechain?–October2024-March2025.
11
12
DataQuality,Governance,andSecurityasstructuralbarriers
DataqualitycontinuestobethemostsigniicantobstacletoadvancedautomationandrelevantAIdeployment
with48%ofrespondentsstatingthattheirdataisonly‘Partiallyaccessibleand/orstandardized’.However,the
emergenceofGenerativeAIofersnewopportunities
topartiallyofsettheselimitations,asitcanhandle
unstructured,incomplete,orheterogeneousdatamoreflexiblythantraditionalAIsystems.Thisopensup
possibilitiesforextractinginformationfromunstructureddocuments(prospectus,fundsfactsheets),forreconcilingheterogeneousdataforregulatoryreporting(multiple
sourceswithinconsistentformatforFATCAcontrols)orsummarizequalitativeperformancecommentaries.
Datagovernanceisalsoinsufficientlymature.Whilea
majorityhaveformalizedpolicies,onlyaminorityhave
‘fullygoverned’supervision.Thisgaprepresentsagrowingriskforregulatedentities,particularlyinviewofthe
increasingcomplexityoftheregulatoryenvironment,whichdemandsbettercontroloverdata.
Ontheinfrastructureside,cloudplatformsarerecognizedascriticalenablers,withagrowingshareofrespondentsidentifyingthemaspivotalforindustrygrowth,especiallyforAssetManagementcompanies.52%oforganizationsreportfullcloudintegration,buthybridenvironments
remainwidespread,creatinginteroperabilitychallengesthathinderfluidscalability.
Stateofcloudadoption,%ofrespondents
ModerateCloudIntegration21%
LimitedCloudUse21%
FullCloudIntegration50%
NoCloudAdoption8%
Nocloudadoption:theorganizationreliesonon-
premisesystems,nocriticalinfrastructure,applicationordataishostedinacloudenvironment.
Limitedclouduse:cloudisusedforsecondaryor
non-criticalfunctions(archiving,backups,messaging,
collaborativetools),butsensitivedataandcorebusinessprocessesremainhostedlocally.
Moderatecloudintegration:asigniicantpartof
businessprocessesanddataaremigratedtothecloud,butcertaincriticalfunctionsremainlocalforregulatoryorsecurityreasons.
Fullcloudintegration:criticalapplications,sensitive
dataandcorebusinessprocessestendtobemigratedtothecloud,inamulti-cloudorhybridenvironmentwithAPI-irstlogic.
OperationalFrictionPoints
Thesetechnologicalandstructurallimitationstranslatedirectlyintocriticaloperationalfrictionpoints.For
custodianbanks,reconciliationerrors,reportingdelays
andlowerSTPrates(especiallyincorporateaction
activity)aredirectconsequencesofdatafragmentation,oftenmentionedaspainpointsinpost-tradeactivities.
13
Thismakesitdifficulttoproducereliableinformationquickly.Thelowscalabilityoflegacyorhybridsystemsmakesitdifficulttoabsorbpeaksinvolumeforassetmanagersortheincreasingdiversiicationofassets.
Additionally,exceptionmanagement(handlingcases
outsideautomatedflow),whichisunavoidablegiventhelackofglobalstandardization,remainsaheavyandcostlyoperationalworkload.
IncreasingRegulatoryPressure
Atthesametime,regulatorypressureisincreasing,makingthisecosystemevenmorecomplex.Recentregulationintroduces:
1.Newoperationalconstraintswith:
?DORAregulatinginancialirmsrelationshipwithITprovidersandintensifyingoversightonthird-partyriskmanagement.
?TheEUAIActregulatingtheuseofAIaccordingtothelevelofriskmakingdeploymentmore
complexforsensitiveapplications.Acrossthe
Atlantic,USregulations(e.g.,CloudAct)mayalsocauseinancialinstitutionstobereluctanttousethesolutionsofUS-basedcompaniesduetolackoftransparencyintermsofdataprocessingandstorageprovidedbyUSprovider.
2.Andtheneedfornewsourceofrevenues:
?WiththeupcomingintroductionofRetail
InvestmentStrategy(RIS)havingdirect
implicationsoncommercialmodelsand
distributionstrategies(banoninducements,costandfeetransparencyobligations,justifyvalue
ofinvestmentsandservicefortheclients).RIS
challengestherevenuestructureandrequireassetmanagerstorethinktheirapproachintermsof:
–Costoptimizationacrossdistributionchannelsandcompliancefunctions,
–Diversiicationofincomebymaximizingcaptureofmanagementfees,
–Businessmodeladaptationtosustain
proitabilityinadvisoryanddiscretionarymanagementservices.
TheDigitalImperative
Thecurrentstateoftheassetmanagementandservicesindustryrevealsatensionbetweenstrategicambition
andoperationalreality.Ontheonehand,thereisalmostunanimousrecognitionoftheimportanceofnew
technologyandastronginterestinAI.Ontheotherhand,operationalrealityissometimeslimitedbydataqualityissuesandaccessibility,lackoftechnicalexpertise,or
budgetlimitations.
Successwillbelongtoirmsthatgobeyondadoption,
byadaptingtotheconvergenceofAI,cloud,anddatainfrastructureasinterconnectedleversoftransformation.
Top-performingorganizationsarealreadyintegrating
cloudmodernizationandAIstrategyintotheirroadmap.
Collaborationisalsoemergingasastrategiclever,
particularlyforlargeandmid-sizedplayers.Manyare
pursuingpartnerships,acquisitions,orintegrationswith
intechecosystemstostrengthentheirtechnological
capabilities,whileremainingagile.Someexamplesof
thepastfewyearsincludeDeutscheB?rse’sinvestmentinClarityAItoreinforceESGanalytics,Clearstream’s
partnershipwithinvestRFP.comtostreamlinefund
selectionprocesses,orthecollaborationbetween6MonksandZeidlertoensureregulatorycomplianceforcross-
borderfunddistribution.
14
AIasaCompanion:
CurrentApplication
inAssetManagement
AIismovingfrombeingjustabuzzwordtoarealtoolthatassetmanagersareexploring.OurtalkswithseniorleadersacrossEuropeshowthatadoptionismostly
abouttryingthingsoutinspeciicareasratherthan
bigcompany-widechanges.OrganizationsaremainlystartingpilotprojectsfocusingonprocesseswhereAIofersclearbeneits.Theyarefocusingtheirefortson3maingoals:
1.makingoperationsrunbetter,
2.improvingCompliance&Riskcontrol,and
3.createnewrevenueopportunities.
TheassetservicingandassetmanagementsectorstillappearstolackmaturityinitsAIjourney,withmany
playersremainingatthestageofusingAIasan“AI
companion”ratherthanmovingtowardbecomingtrulyaugmentedorganizations.
MakingOperationsMoreEfficientandAutomated
Between2021and2023,leadingsassetservicers
recordedanaverage+17.6%growthinassetsunder
custody,withsomeexceeding+25%by20241.While
transactionvolumesandoperationalcomplexityhavegrownsteadily,automationratesinsecuritiesprocessinghavenotincreasedatthesamepace.
Accordingtomarketstudies,Straight-ThroughProcessing(STP)ratesremainunequalacrossassetclasses.For
standardequityandbondtransactions,STPrates
typicallyrangebetween70%and85%inEurope2.Infundorderprocessing,automationratesforUCITSfundsarehigh,oftenreaching85%to90%inmajor
1Basedonareviewofpublicannualreports(2021–2023)fromarepresentativesampleofglobalassetservicers
2SWIFTSecuritiesInsightsReport(2022)
15
marketssuchasLuxembourgandIreland3.However,
foralternativeinvestmentfundsandcross-borderfunddistribution,automationremainssigniicantlylower,
oftenfallingbetween30%and50%,duetopersistentrelianceonmanualprocesseslikefaxandemail.The
situationisevenmorechallengingforcorporateactions,whereSTPratesoftenfallbetween30%and60%duetothecomplexityofeventtypesandtheneedforclientinstructions.
Thisgapbetweentherapidgrowthinactivityand
therelativelyslowimprovementinautomationlevels
createsoperationalrisksandcostpressuresforasset
servicers.IthighlightsthegrowingnecessitytoaccelerateautomationinitiativesandintegrateAI-powered
solutions—particularlyinareasliketradematching
andcorporateactionmanagement.Thelatestinvolvesmorethan50peoplefromtheissueragentsidetothesecuritiesservicingside.AIsolutionscanhelpinstitutionsabsorbrisingvolumes,reducingmanualworkloads,
improvingprocessingaccuracy,andbuildingoperationalresilienceinademandingpost-tradeenvironment.
Partofourrespondentspointedoutseveralkey
areaswhereAIisbeingusedortested.(e.g.,portfoliomanagementsupport,reportingautomation,
reconciliation).
WhenaskedabouttheirAIdeploymentstatus,the
overallpicturesuggestsworkisactivelyunderwaybut
oftennotfullyimplemented.Toillustrate,approximately40%ofparticipantsreportedbeingatleastin‘Partial
implementation’stageforAIinpre-tradeactivities,while10%reportedthesamestageforpost-tradeactivities.
Drillingdownintospeciicareaswhereorganizations
havedeployedAIsolutions,participantsmostfrequentlypointedtocoreoperationalfunctions,as:
?PortfolioManagementSupport:AIdoesnotreplaceinvestmentdecision-making,butassistsportfoliomanagersbyimprovingdataanalysis,indingpatterns,orassistingwithbuilding
syntheticindexandwatchingportfolios.
?ReportingAutomation:AIisusedtosimplifycollection,aggregation,andcreationofreports
3EFAMAFundProcessingStandardizationReport2023
(forclients,regulatorsorinternaluse).
?Reconciliation:AI,viamachinelearning,is
beinglookedatfordifficultreconciliationtasks,automatingthematchingprocess,andspeedingupindingandixingerrors.
Portfolio
management
Others33%
52%
Reconciliation19%
Reporting
33%
Beyondthesecoreprocessareas,AIcontributesto
operationalefficiencybymakingexistingautomationtechnologies“smarter”.Keyexamplesobservedinclude:
?IntelligentDocumentProcessing(IDP):AI
methods,particularlymachinelearningwith
OpticalCharacterRecognition(OCR),areused
topullout,understand,andcheckdatafrom
documentsthataren’tclearlystructured(e.g.,
prospectuses,contracts,invoices)moreaccuratelyandwithabetterunderstandingofthecontextthanoldOCRmethods.
?BoostingRoboticProcessAutomation(RPA):AIaddsintelligencetoRPAbots,allowingthemtodealwithhardertasks,handleproblemsbetter,andmakerule-baseddecisionsinsituations
wherepeopleusedtobeneeded.
?InternalAssistants&KnowledgeTools:
GenAItools,suchasinternaltools,bespoketoolsdevelopedwithAIexternalexperts(e.g.,OpenAi,Google),orcommercialplatforms(e.g.,MicrosoftCopilot)actasassistantsforemployees,makingitfastertoindinformationinlargedatasources(e.g.,internalprocedures,regulations)and
summarizinghighamountsofinformation.
16
?ContentCreation&Communication:GenAIisbeingtestedtohelpwritecommunications(e.g.,emails,internalnotes,partsofpressreleases,
marketingcontent),summarizedocuments,anddraftirstrepliesforcustomerservice,giving
teamsmoretimeforothertasks.
StrengtheningControl,Compliance,andRiskManagement
AIisalsoseenasatoolstrengtheningriskmanagementanddealingwithcomplexregulations.
Intermsofcurrentapplicationswithincontrolfunctions,ComplianceMonitoringemergedasaspeciicuse
casementionedbyasmallnumberofparticipants.
Thesetoolsaimtoautomaticallychecktransactionsorportfolios(AuM)againstprospectusesandregulatoryrestrictions,flaggingpotentialbreachesforreview.
Markettrends,highlightAI’ssigniicantpotentialto
strengthencontrol,compliance,andriskmanagement.Keyexamplesfrequentlydiscussedintheindustry
include:
?FraudDetection:AIprogramsareverytrustfulatanalyzinghugeamountsofdataandindingsmallpatternsorunusualthingsthatsuggest
fraud.TheimprovementcomparedtotraditionalmethodisthereductionoffalsepositiveusingAIAgentsthatautomatethealertreview
process,makingdecisionsonupto90%ofalertsgeneratedbyscreeningtools.Thiscouldoferamoreforward-thinkingapproachthanscreeningsystem,expandinganalyststeamoroutsourcingduringpeakperiods.
?AnomalyDetection:Beyondfraud,AIcan
watchoperationaldatatoindunusualchangesoroutliersthatmightsuggestprocessing
mistakes,orsystemissues,allowingfastercheckingandixing.
?RegulatoryWatch&ImpactAssessment:
GenAIlookspromisingforquicklyanalyzingnewregulations,summarizingkeyrules,andhelpingorganizationsigureoutthepotentialimpactontheiroperations,helpingcomplianceworkbe
moreefficient.
Amaindistinctionhighlightedbythesurveyresponses
concernsAI’scurrentroleinrealtimedecision-making.
WhenaskedifAIisappliedforreal-timedecision-making,mostparticipantssaid‘No’(70%).AIisstillmainlyusedasadecision-supporttool,providinganalysis,pointing
outrisks,suggestingactions,orautomatingpreparationsteps.However,theinaljudgmentanddecision-makingauthorityclearlyremainwithhumanexperts.Thisshowsacarefulapproach,puttinghumansupervisionirst.
17
AIforimprovingclientexperienceandcreatingnewrevenue
IntheAssetManagementandServicingsectors,wherethequalityofclientrelationshipsdirectlyinfluences
retentionandbusinessgrowth,AIca
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年能源生物質(zhì)能利用報(bào)告及未來(lái)五至十年生物能源報(bào)告
- 2026年鞋履護(hù)理機(jī)項(xiàng)目項(xiàng)目建議書
- 2026年光伏發(fā)電效率報(bào)告及未來(lái)五至十年清潔能源轉(zhuǎn)型報(bào)告
- 2025年合成橡膠十年發(fā)展:高性能配方汽車輪胎政策影響報(bào)告
- 2025年汽車制造業(yè)電動(dòng)化轉(zhuǎn)型報(bào)告
- 2026年量子計(jì)算邏輯量子比特項(xiàng)目建議書
- 北京警察學(xué)院《植物生物學(xué)》2024 - 2025 學(xué)年第一學(xué)期期末試卷
- 北華大學(xué)《中國(guó)當(dāng)代文學(xué)》2024 - 2025 學(xué)年第一學(xué)期期末試卷
- 國(guó)防軍事建設(shè)的戰(zhàn)略與任務(wù)戰(zhàn)略轉(zhuǎn)型與戰(zhàn)力重振
- 師德培訓(xùn)課件背景圖
- 2025年物業(yè)管理師《物業(yè)管理實(shí)務(wù)》真題及試題及答案
- 漢語(yǔ)言本科畢業(yè)論文范文模板
- 2025年協(xié)警輔警招聘考試題庫(kù)(新)及答案
- 鋼結(jié)構(gòu)施工優(yōu)化策略研究
- 車間輪崗工作總結(jié)
- 天花設(shè)計(jì)施工方案
- 本科院校實(shí)驗(yàn)員面試電子版題
- 2025年國(guó)家開放大學(xué)(電大)《國(guó)際經(jīng)濟(jì)法》期末考試復(fù)習(xí)題庫(kù)及答案解析
- 雅思2025年閱讀真題解析試卷(含答案)
- 餐飲員工服務(wù)溝通技巧指導(dǎo)書
- 黑色三分鐘1-12部事故類型及直接原因分析(新)
評(píng)論
0/150
提交評(píng)論