吉林省長春市汽車經(jīng)濟(jì)開發(fā)區(qū)第六中學(xué)2026屆數(shù)學(xué)高二上期末復(fù)習(xí)檢測模擬試題含解析_第1頁
吉林省長春市汽車經(jīng)濟(jì)開發(fā)區(qū)第六中學(xué)2026屆數(shù)學(xué)高二上期末復(fù)習(xí)檢測模擬試題含解析_第2頁
吉林省長春市汽車經(jīng)濟(jì)開發(fā)區(qū)第六中學(xué)2026屆數(shù)學(xué)高二上期末復(fù)習(xí)檢測模擬試題含解析_第3頁
吉林省長春市汽車經(jīng)濟(jì)開發(fā)區(qū)第六中學(xué)2026屆數(shù)學(xué)高二上期末復(fù)習(xí)檢測模擬試題含解析_第4頁
吉林省長春市汽車經(jīng)濟(jì)開發(fā)區(qū)第六中學(xué)2026屆數(shù)學(xué)高二上期末復(fù)習(xí)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

吉林省長春市汽車經(jīng)濟(jì)開發(fā)區(qū)第六中學(xué)2026屆數(shù)學(xué)高二上期末復(fù)習(xí)檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.方程化簡的結(jié)果是()A. B.C. D.2.已知等差數(shù)列的前項和為,若,,則()A. B.C. D.3.已知數(shù)列的通項公式為,按項的變化趨勢,該數(shù)列是()A.遞增數(shù)列 B.遞減數(shù)列C.擺動數(shù)列 D.常數(shù)列4.函數(shù)在上的最小值為()A. B.4C. D.5.拋物線y=4x2的焦點坐標(biāo)是()A.(0,1) B.(1,0)C. D.6.設(shè)等比數(shù)列的前項和為,若,則的值是()A. B.C. D.47.已知橢圓+=1(a>b>0)的右焦點為F(3,0),過點F的直線交橢圓于A、B兩點.若AB的中點坐標(biāo)為(1,-1),則E的方程為A.+=1 B.+=1C.+=1 D.+=18.埃及胡夫金字塔是古代世界建筑奇跡之一,它的形狀可視為一個正四棱錐,以該四棱錐的高為邊長的正方形面積等于該四棱錐一個側(cè)面三角形的面積,則其側(cè)面三角形底邊上的高與底面正方形的邊長的比值為()A. B.C. D.9.記不超過x的最大整數(shù)為,如,.已知數(shù)列的通項公式,則使的正整數(shù)n的最大值為()A.5 B.6C.15 D.1610.已知,則下列三個數(shù),,()A.都不大于-4 B.至少有一個不大于-4C.都不小于-4 D.至少有一個不小于-411.王昌齡是盛唐著名的邊塞詩人,被譽(yù)為“七絕圣手”,其《從軍行》傳誦至今“青海長云暗雪山,孤城遙望玉門關(guān).黃沙百戰(zhàn)穿金甲,不破樓蘭終不還”,由此推斷,最后一句“返回家鄉(xiāng)”是“攻破樓蘭”的()A.必要條件 B.充分條件C.充要條件 D.既不充分也不必要12.拋物線的準(zhǔn)線方程為()A B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知正三棱柱中,底面積為,一個側(cè)面的周長為,則正三棱柱外接球的表面積為______.14.兩條平行直線與的距離是__________15.如圖,正方形ABCD的邊長為8,取正方形ABCD各邊的中點E,F(xiàn),G,H,作第2個正方形EFGH,然后再取正方形EFGH各邊的中點I,J,K,L,作第3個正方形IJKL.依此方法一直繼續(xù)下去.①從正方形ABCD開始,第7個正方形的邊長為___;②如果這個作圖過程可以一直繼續(xù)下去,那么作到第n個正方形,這n個正方形的面積之和為___.16.一條直線經(jīng)過,并且傾斜角是直線的傾斜角的2倍,則直線的方程為__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,扇形AOB的半徑為2,圓心角,點C為弧AB上一點,平面AOB且,點且,面MOC(1)求證:平面平面POB;(2)求平面POA與平面MOC所成二面角的正弦值的大小18.(12分)在中,角A、B、C的對邊分別為a、b、c,已知,且.(1)求的面積;(2)若a、b、c成等差數(shù)列,求b的值.19.(12分)已知等差數(shù)列滿足,.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前n項和.20.(12分)人類社會正進(jìn)入數(shù)字時代,網(wǎng)絡(luò)成為了必不可少的工具,智能手機(jī)也給我們的生活帶來了許多方便.但是這些方便、時尚的手機(jī),卻也讓你的眼睛離健康越來越遠(yuǎn).為了了解手機(jī)對視力的影響程度,某研究小組在經(jīng)常使用手機(jī)的中學(xué)生中進(jìn)行了隨機(jī)調(diào)查,并對結(jié)果進(jìn)行了換算,統(tǒng)計了中學(xué)生一個月中平均每天使用手機(jī)的時間x(小時)和視力損傷指數(shù)的數(shù)據(jù)如下表:平均每天使用手機(jī)的時間x(小時)1234567視力損傷指數(shù)y25812151923(1)根據(jù)表中數(shù)據(jù),求y關(guān)于x的線性回歸方程.(2)該小組研究得知:視力的下降值t與視力損傷指數(shù)y滿足函數(shù)關(guān)系式,如果小明在一個月中平均每天使用9個小時手機(jī),根據(jù)(1)中所建立的回歸方程估計小明視力的下降值(結(jié)果保留一位小數(shù)).參考公式及數(shù)據(jù):,..21.(12分)已知函數(shù).(I)若曲線在點處的切線方程為,求的值;(II)若,求的單調(diào)區(qū)間.22.(10分)已知向量,,且.(1)求滿足上述條件的點M(x,y)的軌跡C的方程;(2)設(shè)曲線C與直線y=kx+m(k≠0)相交于不同的兩點P,Q,點A(0,1),當(dāng)|AP|=|AQ|時,求實數(shù)m的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由方程的幾何意義得到是橢圓,進(jìn)而得到焦點和長軸長求解.【詳解】∵方程,表示平面內(nèi)到定點、的距離的和是常數(shù)的點的軌跡,∴它的軌跡是以為焦點,長軸,焦距的橢圓;∴;∴橢圓的方程是,即為化簡的結(jié)果故選:D2、B【解析】根據(jù)和可求得,結(jié)合等差數(shù)列通項公式可求得.【詳解】設(shè)等差數(shù)列公差為,由得:;又,,.故選:B.3、B【解析】分析的單調(diào)性,即可判斷和選擇.【詳解】因為,顯然隨著的增大,是遞增的,故是遞減的,則數(shù)列是遞減數(shù)列.故選:B.4、D【解析】求出導(dǎo)數(shù),由導(dǎo)數(shù)確定函數(shù)在上的單調(diào)性與極值,可得最小值【詳解】,所以時,,遞減,時,,遞增,所以是在上的唯一極值點,極小值也是最小值.故選:D5、C【解析】將拋物線方程化為標(biāo)準(zhǔn)方程,由此可拋物線的焦點坐標(biāo)得選項.【詳解】解:將拋物線y=4x2的化為標(biāo)準(zhǔn)方程為x2=y(tǒng),p=,開口向上,焦點在y軸的正半軸上,故焦點坐標(biāo)為(0,).故選:C6、B【解析】根據(jù)題意,由等比數(shù)列的性質(zhì)可知成等比數(shù)列,從而可得,即可求出的結(jié)果.【詳解】解:已知等比數(shù)列的前項和為,,由等比數(shù)列的性質(zhì)得:成等比數(shù)列,且公比不為-1即成等比數(shù)列,,,.故選:B.7、D【解析】設(shè)、,所以,運用點差法,所以直線的斜率為,設(shè)直線方程為,聯(lián)立直線與橢圓的方程,所以;又因為,解得.【考點定位】本題考查直線與圓錐曲線的關(guān)系,考查學(xué)生的化歸與轉(zhuǎn)化能力.8、C【解析】設(shè),利用得到關(guān)于的方程,解方程即可得到答案.【詳解】如圖,設(shè),則,由題意,即,化簡得,解得(負(fù)值舍去).故選:C【點晴】本題主要考查正四棱錐的概念及其有關(guān)計算,考查學(xué)生的數(shù)學(xué)計算能力,是一道容易題.9、C【解析】根據(jù)取整函數(shù)的定義,可求出的值,即可得到答案;【詳解】,,,,,,當(dāng)時,,使的正整數(shù)n的最大值為,故選:C10、B【解析】利用反證法設(shè),,都大于,結(jié)合基本不等式即可得出結(jié)論.【詳解】設(shè),,都大于,則,由于,故,利用基本不等式可得,當(dāng)且僅當(dāng)時等號成立,這與假設(shè)所得結(jié)論矛盾,故假設(shè)不成立,故下列三個數(shù),,至少有一個不大于,故選:B.11、B【解析】由題意,“不破樓蘭”可以推出“不還”,但是反過來“不還”的原因有多種,按照充分條件、必要條件的定義即可判斷【詳解】由題意,“不破樓蘭終不還”即“不破樓蘭”是“不還”的充分條件,即“不破樓蘭”可以推出“不還”,但是反過來“不還”的原因有多種,比如戰(zhàn)死沙場;即如果已知“還”,一定是已經(jīng)“破樓蘭”,所以“還”是“破樓蘭”的充分條件故選:B12、D【解析】根據(jù)拋物線方程求出,進(jìn)而可得焦點坐標(biāo)以及準(zhǔn)線方程.【詳解】由可得,所以焦點坐標(biāo)為,準(zhǔn)線方程為:,故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】首先由條件求出底面邊長和高,然后設(shè)、分別為上、下底面的的中心,連接,設(shè)的中點為,則點為正三棱柱外接球的球心,然后求出的長度即可.【詳解】如圖所示,設(shè)底面邊長為,則底面面積為,所以,因此等邊三角形的高為:,因為一個側(cè)面的周長為,所以設(shè)、分別為上、下底面的的中心,連接,設(shè)的中點為則點為正三棱柱外接球的球心,連接、則在直角三角形中,即外接球的半徑為,所以外接球的表面積為,故答案為:【點睛】關(guān)鍵點睛:求幾何體的外接球半徑的關(guān)鍵是根據(jù)幾何體的性質(zhì)找出球心的位置.14、5【解析】根據(jù)兩平行直線,可求得a值,根據(jù)兩平行線間距離公式,即可得答案.【詳解】因為兩平行直線與,所以,解得,所以兩平行線的距離.故答案為:515、①.1②.【解析】根據(jù)題意,正方形邊長成等比數(shù)列,正方形的面積等于邊長的平方可得,然后根據(jù)等比數(shù)列的通項公式及等比數(shù)列的前n項和的公式即可求解.【詳解】設(shè)第n個正方形的邊長為,第n個正方形的面積為,則第n個正方形的對角線長為,所以第n+1個正方形的邊長為,,∴數(shù)列{}是首項為,公比為的等比數(shù)列,,∴,即第7個正方形的邊長為1;∴數(shù)列{}是首項為,公比為的等比數(shù)列,故答案為:1;.16、【解析】先求出直線傾斜角,從而可求得直線的傾斜角,則可求出直線的斜率,進(jìn)而可求出直線的方程【詳解】因為直線的斜率為,所以直線的傾斜角為,所以直線的傾斜角為,所以直線的斜率為,因為直線經(jīng)過,所以直線的方程為,即,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)連接,設(shè)與相交于點,連接MN,利用余弦定理可求得,,的長度,進(jìn)而得到,又,由此可得平面,最后利用面面垂直的判定定理即可得證;(2)建立恰當(dāng)空間直角坐標(biāo)系,求出兩個平面的法向量,然后利用向量法求解二面角的余弦值,從而即可得答案【小問1詳解】證明:連接,設(shè)與相交于點,連接MN,平面,在平面內(nèi),平面平面,,,,在中,由余弦定理可得,,,又在中,,由余弦定理可得,,,故,又平面,在平面內(nèi),,又,平面,又平面,平面平面;【小問2詳解】解:由(1)可知直線,,兩兩互相垂直,所以以點為坐標(biāo)原點,建立如圖所示的空間直角坐標(biāo)系,則,所以,,設(shè)平面的一個法向量為,則,可取;設(shè)平面的一個法向量為,則,可取,,平面與平面所成二面角的正弦值為18、(1);(2).【解析】(1)先利用數(shù)量積和余弦值得到,再利用面積公式計算即得結(jié)果;(2)根據(jù)等差數(shù)列得到,再結(jié)合余弦定理進(jìn)行運算得到關(guān)于b的關(guān)系,求值即可.【詳解】(1)由得,所以,所以,所以,所以;(2)因為a、b、c成等差數(shù)列,所以,由余弦定理得,即,解得.19、(1);(2).【解析】(1)將條件化為基本量并解出,進(jìn)而求得答案;(2)通過裂項法即可求出答案.【小問1詳解】由,.得:解得:故.【小問2詳解】當(dāng)時,.所以時,.20、(1)(2)0.3【解析】(1)由表格數(shù)據(jù)及參考公式即可求解;(2)由(1)中線性回歸方程計算小明的視力損傷指數(shù),再將代入視力的下降值t與視力損傷指數(shù)y滿足的函數(shù)關(guān)系式即可求解.【小問1詳解】解:由表格數(shù)據(jù)得:,,,,所以線性回歸方程為;【小問2詳解】解:小明的視力損傷指數(shù),所以,估計小明視力的下降值為0.3.21、(Ⅰ)(Ⅱ)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減【解析】(Ⅰ)求出函數(shù)的導(dǎo)函數(shù),根據(jù)題意可得得到關(guān)于的方程組,解得;(Ⅱ)求出函數(shù)的導(dǎo)函數(shù),解得函數(shù)的單調(diào)遞增區(qū)間,解得函數(shù)的單調(diào)遞減區(qū)間.【詳解】解:(Ⅰ)因為函數(shù)在點處的切線方程為解得(Ⅱ)令,得或.因為,所以時,;時,.故在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減【點睛】本題考查導(dǎo)數(shù)的幾何意義,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,屬于基礎(chǔ)題.22、(1)+y2=1;(2).【解析】(1)應(yīng)用向量垂直的坐標(biāo)表示得x2+3y2=3,即可寫出M的軌跡C的方程;(2)由直線與曲線C交于不同的兩點P(x1,y1),Q(x2,y2),設(shè)直線y=kx+m(k≠0),聯(lián)立方程整理所得方程有,且由根與系數(shù)關(guān)系用m,k表示x1+x2,x1x2,若N為PQ的中點結(jié)合|AP|=|AQ|知PQ⊥AN可得m、k的等量關(guān)系,結(jié)合即可求m的范圍.【詳解】(1)∵,即,∴,即有x2+3y2=3,即點M(x,y)的軌跡C的方程為+y2=1.(2)由得(1+3k2)x2+6kmx+3(m2-1)=0.∵曲線C與直線y=kx+m(k≠0)相交于不同的兩點,∴Δ=(6km)2-12(1+3k2)(m2-1)=12(3k2-m2+1)>0,即3k2-m2+1>0①,且x1+x2=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論