甘肅天水市太京中學2026屆高二數(shù)學第一學期期末達標檢測模擬試題含解析_第1頁
甘肅天水市太京中學2026屆高二數(shù)學第一學期期末達標檢測模擬試題含解析_第2頁
甘肅天水市太京中學2026屆高二數(shù)學第一學期期末達標檢測模擬試題含解析_第3頁
甘肅天水市太京中學2026屆高二數(shù)學第一學期期末達標檢測模擬試題含解析_第4頁
甘肅天水市太京中學2026屆高二數(shù)學第一學期期末達標檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

甘肅天水市太京中學2026屆高二數(shù)學第一學期期末達標檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列數(shù)列是遞增數(shù)列的是()A. B.C. D.2.設函數(shù)的圖象在點處的切線為,則與坐標軸圍成的三角形面積的最小值為()A. B.C. D.3.某公司要建造一個長方體狀的無蓋箱子,其容積為48m3,高為3m,如果箱底每1m2的造價為15元,箱壁每1m2造價為12元,則箱子的最低總造價為()A.72元 B.300元C.512元 D.816元4.【山東省濰坊市二?!恳阎p曲線的離心率為,其左焦點為,則雙曲線的方程為()A. B.C. D.5.如果直線與直線垂直,那么的值為()A. B.C. D.26.已知拋物線y2=2px(p>0)的焦點為F,準線為l,M是拋物線上一點,過點M作MN⊥l于N.若△MNF是邊長為2的正三角形,則p=()A. B.C.1 D.27.若雙曲線的離心率為3,則的最小值為()A. B.1C. D.28.“若”為真命題,那么p是(

)A. B.C. D.9.已知中,角,,的對邊分別為,,,且,,成等比數(shù)列,則這個三角形的形狀是()A.直角三角形 B.等邊三角形C.等腰直角三角形 D.鈍角三角形10.已知等比數(shù)列,且,則()A.16 B.32C.24 D.6411.數(shù)列滿足且,則的值是()A.1 B.4C.-3 D.612.某商場有四類食品,其中糧食類、植物油類、動物性食品類以及果蔬類分別有40種、10種、30種、20種,現(xiàn)從中抽取一個容量為20的樣本進行食品安全檢測.若采用分層抽樣的方法抽取樣本,則抽取的植物油類與果蔬類食品種數(shù)之和是()A.4 B.5C.6 D.7二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線:的左、右焦點分別為,,為的右支上一點,且,則的離心率為___________.14.若,則___15.在區(qū)間上隨機取1個數(shù),則取到的數(shù)小于2的概率為___________.16.若等比數(shù)列滿足,則的前n項和____________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,三棱柱中,底面邊長和側棱長都等于1,(1)設,,,用向量表示,并求出的長度;(2)求異面直線與所成角的余弦值18.(12分)設數(shù)列滿足,數(shù)列的前項和為,且(1)求證:數(shù)列為等差數(shù)列,并求的通項公式;(2)設,若對任意正整數(shù),當時,恒成立,求實數(shù)的取值范圍.19.(12分)已知橢圓的上、下頂點分別為A,B,離心率為,橢圓C上的點與其右焦點F的最短距離為.(1)求橢圓C的標準方程;(2)若直線與橢圓C交于P,Q兩點,直線PA與QB的斜率分別為,,且,那么直線l是否過定點,若過定點,求出該定點坐標;否則,請說明理由.20.(12分)已知橢圓:的長軸長是短軸長的倍,且經(jīng)過點.(1)求的標準方程;(2)的右頂點為,過右焦點的直線與交于不同的兩點,,求面積的最大值.21.(12分)已知橢圓的離心率為,短軸長為2(1)求橢圓的方程;(2)設過點且斜率為的直線與橢圓交于不同的兩點,,求當?shù)拿娣e取得最大值時的值22.(10分)如圖,四棱柱的底面為正方形,平面,,,點在上,且.(1)求證:;(2)求直線與平面所成角的正弦值;(3)求平面與平面夾角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】分別判斷的符號,從而可得出答案.【詳解】解:對于A,,則,所以數(shù)列為遞減數(shù)列,故A不符合題意;對于B,,則,所以數(shù)列為遞減數(shù)列,故B不符合題意;對于C,,則,所以數(shù)列為遞增數(shù)列,故C符合題意;對于D,,則,所以數(shù)列遞減數(shù)列,故D不符合題意.故選:C.2、C【解析】利用導數(shù)的幾何意義求得切線為,求x、y軸上截距,進而可得與坐標軸圍成的三角形面積,利用導數(shù)研究在上的最值即可得結果.【詳解】由題設,,則,又,所以切線為,當時,當時,又,所以與坐標軸圍成的三角形面積為,則,當時,當時,所以在上遞減,在上遞增,即.故選:C3、D【解析】設這個箱子的箱底的長為xm,則寬為m,設箱子總造價為f(x)元,則f(x)=72(x)+240,由此利用均值不等式能求出箱子的最低總造價【詳解】設這個箱子的箱底的長為xm,則寬為m,設箱子總造價為f(x)元,∴f(x)=15×16+12×3(2x)=72(x)+240≥144240=816,當且僅當x,即x=4時,f(x)取最小值816元故選:D4、D【解析】分析:根據(jù)題設條件,列出方程,求出,,的值,即可求得雙曲線得標準方程詳解:∵雙曲線的離心率為,其左焦點為∴,∴∵∴∴雙曲線的標準方程為故選D.點睛:本題考查雙曲線的標準方程,雙曲線的簡單性質(zhì)的應用,根據(jù)題設條件求出,,的值是解決本題的關鍵.5、A【解析】根據(jù)兩條直線垂直列方程,化簡求得的值.【詳解】由于直線與直線垂直,所以.故選:A6、C【解析】根據(jù)正三角形的性質(zhì),結合拋物線的性質(zhì)進行求解即可.【詳解】如圖所示:準線l與橫軸的交點為,由拋物線的性質(zhì)可知:,因為若△MNF是邊長為2的正三角形,所以,,顯然,在直角三角形中,,故選:C7、D【解析】由雙曲線的離心率為3和,求得,化簡,結合基本不等式,即可求解.【詳解】由題意,雙曲線的離心率為3,即,即,又由,可得,所以,當且僅當,即時,“”成立.故選:D【點睛】使用基本不等式解答問題的策略:1、利用基本不等式求最值時,要注意三點:一是各項為正;二是尋求定值;三是考慮等號成立的條件;2、若多次使用基本不等式時,容易忽視等號的條件的一致性,導致錯解;3、巧用“拆”“拼”“湊”:在使用基本不等式時,要特別注意“拆”“拼”“湊”等技巧,使其滿足基本不等式中的“正、定、等”的條件.8、A【解析】求不等式的解集,根據(jù)解集判斷p.【詳解】由解得-2<x<4,所以p是.故選:A.9、B【解析】根據(jù)題意求出,結合余弦定理分情況討論即可.【詳解】解:因為,所以.由題意得,利用余弦定理得:.當,即時,,即,解得:.此時三角形為等邊三角形;當,即時,,不成立.所以三角形的形狀是等邊三角形.故選:B.【點睛】本題主要考查利用余弦定理判斷三角形的形狀,屬于基礎題.10、A【解析】由等比數(shù)列的定義先求出公比,然后可解..【詳解】,得故選:A11、A【解析】根據(jù)題意,由于,可知數(shù)列是公差為-3的等差數(shù)列,則可知d=-3,由于=,故選A12、C【解析】按照分層抽樣的定義進行抽取.【詳解】按照分層抽樣的定義有,糧食類:植物油類:動物性食品類:果蔬類=4:1:3:2,抽20個出來,則糧食類8個,植物油類2個,動物性食品類6個,果蔬類4個,則抽取的植物油類與果蔬類食品種數(shù)之和是6個.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由雙曲線定義可得a,代入點P坐標可得b,然后可解.【詳解】由題知,故,又點在雙曲線上,所以,解得,所以.故答案為:14、##0.5【解析】導數(shù)的定義公式的變形應用,要求分子分母的變化量相同.【詳解】故答案為:.15、【解析】根據(jù)幾何概型計算公式進行求解即可.【詳解】設“區(qū)間上隨機取1個數(shù)”,對應集合為,區(qū)間長度為3,“取到的數(shù)小于2”,對應集合為,區(qū)間長度為1,所以.故答案為:16、##【解析】由已知及等比數(shù)列的通項公式得到首項和公比,再利用前n項和公式計算即可.【詳解】設等比數(shù)列的公比為,由已知,得,解得,所以.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)根據(jù)向量加減法運算法則可得,根據(jù)計算可得的長度;(2)根據(jù)空間向量的夾角公式計算可得結果.【小問1詳解】,因為,同理可得,所以【小問2詳解】因為,所以,因為,所以所以異面直線與所成角的余弦值為18、(1)證明見解析,;(2)或.【解析】(1)結合與關系用即可證明為常數(shù);求出通項公式后利用累加法即可求的通項公式;(2)裂項相消求,判斷單調(diào)性求其最大值即可.【小問1詳解】當時,得到,∴,當時,是以4為首項,2為公差的等差數(shù)列∴當時,當時,也滿足上式,.【小問2詳解】令,當,因此的最小值為,的最大值為對任意正整數(shù),當時,恒成立,得,即在時恒成立,,解得t<0或t>3.19、(1)(2)恒過點【解析】(1)設為橢圓上的點,根據(jù)橢圓的性質(zhì)得到,再根據(jù)的取值范圍,得到,再根據(jù)離心率求出、,最后根據(jù),求出,即可得解;(2)設、,表示出、,聯(lián)立直線與橢圓方程,消元列出韋達定理,由,即可得到,再根據(jù),即可得到,從而得到,再將、代入計算可得;【小問1詳解】解:設為橢圓上的點,為橢圓的右焦點,所以,因為,所以,又,所以、,因為,所以,所以橢圓方程為;【小問2詳解】解:設、,依題意可得、,所以、,聯(lián)立得,則即,所以、,因為,所以,即,由得,即,所以,即,,整理得,所以,即,即,解得或,當時直線過點,故舍去,所以,則直線恒過點;20、(1);(2)【解析】(1)利用已知條件,結合橢圓方程求出,即可得到橢圓方程(2)設出直線方程,聯(lián)立橢圓與直線方程,利用韋達定理,弦長公式,列出三角形的面積,再利用基本不等式轉化求解即可【詳解】(1)解:由題意解得,,所以橢圓的標準方程為(2)點,右焦點,由題意知直線的斜率不為0,故設的方程為,,,聯(lián)立方程得消去,整理得,∴,,,,當且僅當時等號成立,此時:,所以面積的最大值為【點睛】本題考查橢圓的性質(zhì)和方程的求法,考查聯(lián)立直線方程和橢圓方程消去未知數(shù),運用韋達定理化簡整理和運算能力,屬于中檔題21、(1);(2).【解析】(1)由短軸長得,由離心率處也的關系,從而可求得,得橢圓方程;(2)設,,直線的方程為,代入橢圓方程應用韋達定理得,由弦長公式得弦長,求出原點到直線的距離,得出三角形面積為的函數(shù),用換元法,基本不等式求得最大值,得值【詳解】解:(1)由題意得,,所以,,橢圓的方程為(2)直線的方程為,代入橢圓的方程,整理得由題意,,設,則,弦長,點到直線的距離,所以的面積,令,則,當且僅當時取等號.所以,對應的,可解得,滿足題意22、(1)證明見解析(2)(3)【解析】(1)以為原點,所在的直線為軸的正方向建立空間直角坐標系,求出平面的一個法向量可得,即平面,再由線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論