版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
上海市晉元高中2026屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.古希臘數(shù)學(xué)家阿基米德利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長(zhǎng)半軸長(zhǎng)與短半軸長(zhǎng)的乘積.若橢圓C的中心為原點(diǎn),焦點(diǎn),均在y軸上,橢圓C的面積為,且短軸長(zhǎng)為,則橢圓C的標(biāo)準(zhǔn)方程為()A. B.C. D.2.已知直線l與圓交于A,B兩點(diǎn),點(diǎn)滿足,若AB的中點(diǎn)為M,則的最大值為()A. B.C. D.3.已知函數(shù),則下列判斷正確的是()A.直線與曲線相切B.函數(shù)只有極大值,無(wú)極小值C.若與互為相反數(shù),則的極值與的極值互為相反數(shù)D.若與互為倒數(shù),則的極值與的極值互為倒數(shù)4.已知F為橢圓C:=1(a>b>0)右焦點(diǎn),O為坐標(biāo)原點(diǎn),P為橢圓C上一點(diǎn),若|OP|=|OF|,∠POF=120°,則橢圓C的離心率為()A. B.C.-1 D.-15.已知條件:,條件:表示一個(gè)橢圓,則是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.已知m,n為異面直線,m⊥平面α,n⊥平面β,直線l滿足l⊥m,l⊥n,則()A.α∥β且∥α B.α⊥β且⊥βC.α與β相交,且交線垂直于 D.α與β相交,且交線平行于7.如圖,在棱長(zhǎng)為1的正方體中,P、Q、R分別是棱AB、BC、的中點(diǎn),以PQR為底面作一個(gè)直三棱柱,使其另一個(gè)底面的三個(gè)頂點(diǎn)也都在正方體的表面上,則這個(gè)直三棱柱的體積為()A. B.C. D.8.學(xué)校開(kāi)設(shè)甲類選修課3門(mén),乙類選修課4門(mén),從中任選3門(mén),甲乙兩類課程都有選擇的不同選法種數(shù)為()A.24 B.30C.60 D.1209.設(shè)點(diǎn)P是函數(shù)圖象上任意一點(diǎn),點(diǎn)Q的坐標(biāo),當(dāng)取得最小值時(shí)圓C:上恰有2個(gè)點(diǎn)到直線的距離為1,則實(shí)數(shù)r的取值范圍為()A. B.C. D.10.下列關(guān)于斜二測(cè)畫(huà)法所得直觀圖的說(shuō)法中正確的有()①三角形的直觀圖是三角形;②平行四邊形的直觀圖是平行四邊形;③菱形的直觀圖是菱形;④正方形的直觀圖是正方形.A.① B.①②C.③④ D.①②③④11.設(shè)直線的傾斜角為,且,則滿足A. B.C. D.12.設(shè)、分別是橢圓()的左、右焦點(diǎn),過(guò)的直線l與橢圓E相交于A、B兩點(diǎn),且,則的長(zhǎng)為()A. B.1C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知圓,過(guò)點(diǎn)作圓O的切線,則切線方程為_(kāi)__________.14.?dāng)?shù)列滿足,則__________.15.在棱長(zhǎng)為2的正方體中,點(diǎn)P是直線上的一個(gè)動(dòng)點(diǎn),點(diǎn)Q在平面上,則的最小值為_(kāi)_______.16.已知球的半徑為4,圓與圓為該球的兩個(gè)小圓,為圓與圓的公共弦,,若,則兩圓圓心的距離___________三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知點(diǎn)P到點(diǎn)的距離比它到直線的距離小1.(1)求點(diǎn)P的軌跡方程;(2)點(diǎn)M,N在點(diǎn)P的軌跡上且位于x軸的兩側(cè),(其中O為坐標(biāo)原點(diǎn)),求面積的最小值.18.(12分)已知函數(shù),從下列兩個(gè)條件中選擇一個(gè)使得數(shù)列{an}成等比數(shù)列.條件1:數(shù)列{f(an)}是首項(xiàng)為4,公比為2的等比數(shù)列;條件2:數(shù)列{f(an)}是首項(xiàng)為4,公差為2的等差數(shù)列.(1)求數(shù)列{an}的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和.19.(12分)已知圓C的圓心C在直線上,且與直線相切于點(diǎn).(1)求圓C的方程;(2)過(guò)點(diǎn)的直線與圓C交于兩點(diǎn),線段的中點(diǎn)為M,直線與直線的交點(diǎn)為N.判斷是否為定值.若是,求出這個(gè)定值,若不是,說(shuō)明理由.20.(12分)已知橢圓的離心率為,以橢圓兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)為頂點(diǎn)構(gòu)成的三角形的面積為(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)過(guò)點(diǎn)作直線l與橢圓C相切于點(diǎn)Q,且直線l斜率大于0,過(guò)線段PQ的中點(diǎn)R作直線交橢圓于A,B兩點(diǎn)(點(diǎn)A,B不在y軸上),連結(jié)PA,PB,分別與橢圓交于點(diǎn)M,N,試判斷直線MN的斜率是否為定值;若是,請(qǐng)求出該定值21.(12分)已知圓經(jīng)過(guò)點(diǎn)和,且圓心在直線上.(1)求圓的方程;(2)過(guò)原點(diǎn)的直線與圓交于M,N兩點(diǎn),若的面積為,求直線的方程.22.(10分)如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥面ABCD,E為PD的中點(diǎn).(1)證明:PB∥面AEC;(2)設(shè)AP=1,AD=,三棱錐P-ABD的體積V=,求點(diǎn)A到平面PBC的距離.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】設(shè)出橢圓的標(biāo)準(zhǔn)方程,根據(jù)已知條件,求得,即可求得結(jié)果.【詳解】因?yàn)闄E圓的焦點(diǎn)在軸上,故可設(shè)其方程為,根據(jù)題意可得,,故可得,故所求橢圓方程為:.故選:C.2、A【解析】設(shè),,則、,由點(diǎn)在圓上可得,再由向量垂直的坐標(biāo)表示可得,進(jìn)而可得M的軌跡為圓,即可求的最大值.【詳解】設(shè),中點(diǎn),則,,又,,則,所以,又,則,而,,所以,即,綜上,,整理得,即為M的軌跡方程,所以在圓心為,半徑為的圓上,則.故選:A.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:由點(diǎn)圓位置、中點(diǎn)坐標(biāo)公式及向量垂直的坐標(biāo)表示得到關(guān)于的軌跡方程.3、C【解析】求出函數(shù)的導(dǎo)函數(shù),通過(guò)在某點(diǎn)處的導(dǎo)數(shù)為該點(diǎn)處切線的斜率,求出切線方程,并且判斷出極值,通過(guò)結(jié)合與互為相反數(shù),若與互為倒數(shù),分別判斷的極值與的極值是否互為相反數(shù),以及是否互為倒數(shù).【詳解】,,令,得,所以,因?yàn)?,,所以曲線在點(diǎn)處的切線方程為,故A錯(cuò);當(dāng)時(shí),存在使,且當(dāng)時(shí),;當(dāng)時(shí),,即有極小值,無(wú)極大值,故B錯(cuò)誤;設(shè)為的極值點(diǎn),則,且,所以,,當(dāng)時(shí),;當(dāng)時(shí),,故C正確,D錯(cuò)誤.4、D【解析】記橢圓的左焦點(diǎn)為,在中,通過(guò)余弦定理得出,,根據(jù)橢圓的定義可得,進(jìn)而可得結(jié)果.【詳解】記橢圓的左焦點(diǎn)為,在中,可得,在中,可得,故,故,故選:D.5、B【解析】根據(jù)曲線方程,結(jié)合充分、必要性的定義判斷題設(shè)條件間的關(guān)系.【詳解】由,若,則表示一個(gè)圓,充分性不成立;而表示一個(gè)橢圓,則成立,必要性成立.所以是的必要不充分條件.故選:B6、D【解析】由平面,直線滿足,且,所以,又平面,,所以,由直線為異面直線,且平面平面,則與相交,否則,若則推出,與異面矛盾,所以相交,且交線平行于,故選D考點(diǎn):平面與平面的位置關(guān)系,平面的基本性質(zhì)及其推論7、C【解析】分別取的中點(diǎn),連接,利用棱柱的定義證明幾何體是三棱柱,再證明平面PQR,得到三棱柱是直三棱柱求解.【詳解】如圖所示:連接,分別取其中點(diǎn),連接,則,且,所以幾何體是三棱柱,又,且,所以平面,所以,同理,又,所以平面PQR,所以三棱柱是直三棱柱,因?yàn)檎襟w的棱長(zhǎng)為1,所以,所以直三棱柱的體積為,故選:C8、B【解析】利用組合數(shù)計(jì)算出正確答案.【詳解】甲乙兩類課程都有選擇的不同選法種數(shù)為.故選:B9、C【解析】先求出代表的是以為圓心,2為半徑的圓的位于x軸下方部分(包含x軸上的部分),數(shù)形結(jié)合得到取得最小值時(shí)a的值,得到圓心C,利用點(diǎn)到直線距離求出圓心C到直線的距離,數(shù)形結(jié)合求出半徑r的取值范圍.【詳解】,兩邊平方得:,即點(diǎn)P在以為圓心,2為半徑的圓的位于x軸下方部分(包含x軸上的部分),如圖所示:因?yàn)镼的坐標(biāo)為,則在直線,過(guò)點(diǎn)A作⊥l于點(diǎn),與半圓交于點(diǎn),此時(shí)長(zhǎng)為的最小值,則,所以直線:,與聯(lián)立得:,所以,解得:,則圓C:,則,圓心到直線的距離為,要想圓C上恰有2個(gè)點(diǎn)到直線的距離為1,則.故選:C10、B【解析】根據(jù)斜二側(cè)直觀圖的畫(huà)法法則,直接判斷①②③④的正確性,即可推出結(jié)論【詳解】由斜二測(cè)畫(huà)法規(guī)則知:三角形的直觀圖仍然是三角形,所以①正確;根據(jù)平行性不變知,平行四邊形的直觀圖還是平行四邊形,所以②正確;根據(jù)兩軸的夾角為45°或135°知,菱形的直觀圖不再是菱形,所以③錯(cuò)誤;根據(jù)平行于x軸的長(zhǎng)度不變,平行于y軸的長(zhǎng)度減半知,正方形的直觀圖不再是正方形,所以④錯(cuò)誤.故選:B.11、D【解析】因?yàn)椋?,,,,故選D12、C【解析】由橢圓的定義得:,,結(jié)合條件可得,即可得答案.【詳解】由橢圓的定義得:,,又,,所以,由橢圓知,所以.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、或【解析】首先判斷點(diǎn)圓位置關(guān)系,再設(shè)切線方程并聯(lián)立圓的方程,根據(jù)所得方程求參數(shù)k,即可寫(xiě)出切線方程.【詳解】由題設(shè),,故在圓外,根據(jù)圓及,知:過(guò)作圓O的切線斜率一定存在,∴可設(shè)切線為,聯(lián)立圓的方程,整理得,∴,解得或.∴切線方程為或.故答案為:或.14、【解析】對(duì)遞推關(guān)系多遞推一次,再相減,可得,再驗(yàn)證是否滿足;【詳解】∵①時(shí),②①-②得,時(shí),滿足上式,.故答案為:.【點(diǎn)睛】數(shù)列中碰到遞推關(guān)系問(wèn)題,經(jīng)常利用多遞推一次再相減的思想方法求解.15、【解析】數(shù)形結(jié)合分析出的最小值為點(diǎn)到平面的距離,然后利用等體積法求出距離即可.【詳解】因?yàn)?,且平面,平面,所以平面,所以的最小值為點(diǎn)到平面的距離,設(shè)到平面的距離為,則,所以,即,解得,故答案為:.16、【解析】欲求兩圓圓心的距離,將它放在與球心組成的三角形中,只要求出球心角即可,通過(guò)球的性質(zhì)構(gòu)成的直角三角形即可解得【詳解】∵,球半徑為4,∴小圓的半徑為,∵小圓中弦長(zhǎng),作垂直于,∴,同理可得,在直角三角形中,∵,,∴,∴,∴故答案為:.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解析】(1)根據(jù)給定條件可得點(diǎn)P到點(diǎn)的距離等于它到直線的距離,再由拋物線定義即可得解.(2)由(1)設(shè)出點(diǎn)M,N的坐標(biāo),再結(jié)合給定條件及三角形面積定理列式,借助均值不等式計(jì)算作答.【小問(wèn)1詳解】因點(diǎn)P到點(diǎn)的距離比它到直線的距離小1,顯然點(diǎn)P與F在直線l同側(cè),于是得點(diǎn)P到點(diǎn)的距離等于它到直線的距離,則點(diǎn)P的軌跡是以F為焦點(diǎn),直線為準(zhǔn)線的拋物線,所以點(diǎn)P的軌跡方程是.【小問(wèn)2詳解】由(1)設(shè)點(diǎn),,且,因,則,解得,S,當(dāng)且僅當(dāng),即時(shí)取“=”,所以面積的最小值為.【點(diǎn)睛】思路點(diǎn)睛:圓錐曲線中的幾何圖形面積范圍或最值問(wèn)題,可以以直線的斜率、橫(縱)截距、圖形上動(dòng)點(diǎn)的橫(縱)坐標(biāo)為變量,建立函數(shù)關(guān)系求解作答.18、(1)(2)【解析】(1)根據(jù)所給的條件分別計(jì)算后即可判斷,再通過(guò)滿足題意的求出通項(xiàng);(2)由(1)可得,再通過(guò)錯(cuò)位相減法求和即可.【小問(wèn)1詳解】若選擇條件1,則有,可得,不滿足題意;若選擇條件2,則有,可得,滿足題意,故.【小問(wèn)2詳解】由(1)可得,所以………①因此有……….②①②可得,即,化簡(jiǎn)得.19、(1)(2)【解析】(1)設(shè)過(guò)點(diǎn)且與直線垂直的直線為,將代入直線方程,即可求出,再與求交點(diǎn)坐標(biāo),得到圓心坐標(biāo),再求出半徑,即可得解;(2)分直線的斜率存在與不存在兩種情況討論,當(dāng)斜率不存在直接求出、的坐標(biāo),即可求出,當(dāng)直線的斜率存在,設(shè)直線為、、,聯(lián)立直線與圓的方程,消元列出韋達(dá)定理,即可表示出的坐標(biāo),再求出的坐標(biāo),即可表示出、,即可得解;【小問(wèn)1詳解】解:設(shè)過(guò)點(diǎn)且與直線垂直的直線為,則,解得,即,由,解得,即圓心坐標(biāo)為,所以半徑,所以圓的方程為【小問(wèn)2詳解】解:當(dāng)直線的斜率存在時(shí),設(shè)過(guò)點(diǎn)的直線為,所以,消去得,設(shè)、,則,,所以,所以的中點(diǎn),由解得,即,所以,,所以;當(dāng)直線的斜率不存在時(shí),直線的方程為,由,解得或,即、,所以,所以又解得,即,所以,所以,綜上可得.20、(1)(2)是,【解析】(1)根據(jù)離心率以及橢圓兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)為頂點(diǎn)構(gòu)成的三角形的面積列出等式即可求解;(2)設(shè)出相關(guān)直線與相關(guān)點(diǎn)的坐標(biāo),直線與橢圓聯(lián)立,點(diǎn)的坐標(biāo)配合斜率公式化簡(jiǎn),再運(yùn)用韋達(dá)理化簡(jiǎn)可證明.【小問(wèn)1詳解】由題意得,解得,則橢圓C的標(biāo)準(zhǔn)方程為【小問(wèn)2詳解】設(shè)切線PQ的方程為,,,,,由,消去y得①,則,解得或(舍去),將代入①得,,解得,則,所以,又R為PQ中點(diǎn),則,因?yàn)镻A,PB斜率都存在,不妨設(shè),,由①可得,所以,,同理,,則,又R,A,B三點(diǎn)共線,則,化簡(jiǎn)得,所以.21、(1)(2)直線的方程為或或【解析】(1)由弦的中垂線與直線的交點(diǎn)為圓心即可求解;(2)由,可得或,進(jìn)而有或,顯然直線斜率存在,設(shè)直線,由點(diǎn)到直線的距離公式求出的值即可得答案.【小問(wèn)1詳解】解:設(shè)弦的中點(diǎn)為,則有,因?yàn)椋灾本€,所以直線的中垂線為,則圓心在直線上,且在直線上,聯(lián)立方程解得圓心,則圓的半徑為,所以圓方程為;【小問(wèn)2詳解】解:設(shè)圓心到直線的距離為,因?yàn)?,所以或,所以或,顯然直線斜率存在,所以設(shè)直線,則或,解得或或
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 國(guó)家賠償項(xiàng)目申請(qǐng)書(shū)
- 離職加補(bǔ)休申請(qǐng)書(shū)
- 扶貧搬遷資金申請(qǐng)書(shū)
- 2025年食堂管理與服務(wù)規(guī)范
- 2026年幼兒園綠色課堂寓教于樂(lè)
- 脫硫脫硝設(shè)備檢修申請(qǐng)書(shū)
- 個(gè)人辭職申請(qǐng)書(shū)范文
- 勞動(dòng)合同續(xù)簽審批申請(qǐng)書(shū)
- 單位之間競(jìng)爭(zhēng)上崗申請(qǐng)書(shū)
- 疫情外出報(bào)備審批申請(qǐng)書(shū)
- 2025年全科醫(yī)生轉(zhuǎn)崗培訓(xùn)考試題庫(kù)及答案
- 外貿(mào)進(jìn)出口2025年代理報(bào)關(guān)合同協(xié)議
- 2024年安徽理工大學(xué)馬克思主義基本原理概論期末考試模擬試卷
- 2025年中考跨學(xué)科案例分析模擬卷一(含解析)
- 2025年水利工程質(zhì)量檢測(cè)員考試(金屬結(jié)構(gòu))經(jīng)典試題及答案
- 透析充分性及評(píng)估
- 安全文明施工二次策劃方案
- DB34∕T 5244-2025 消防物聯(lián)網(wǎng)系統(tǒng)技術(shù)規(guī)范
- 2026年合同管理與合同風(fēng)險(xiǎn)防控培訓(xùn)課件與法律合規(guī)指南
- 脛骨骨髓炎的護(hù)理查房
- 少年有志歌詞
評(píng)論
0/150
提交評(píng)論