版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
天水市重點(diǎn)中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在平行六面體ABCD﹣A1B1C1D1中,AC與BD的交點(diǎn)為M,設(shè)=,=,=,則=()A.++ B.+C.++ D.+2.若函數(shù),(其中,)的最小正周期是,且,則()A. B.C. D.3.圓關(guān)于直線l:對(duì)稱的圓的方程為()A. B.C. D.4.已知圓柱的底面半徑是1,高是2,那么該圓柱的側(cè)面積是()A.2 B.C. D.5.設(shè)函數(shù),則下列函數(shù)中為奇函數(shù)的是()A. B.C. D.6.中國(guó)大運(yùn)河項(xiàng)目成功人選世界文化遺產(chǎn)名錄,成為中國(guó)第46個(gè)世界遺產(chǎn)項(xiàng)目,隨著對(duì)大運(yùn)河的保護(hù)與開(kāi)發(fā),大運(yùn)河已成為北京城市副中心的一張亮麗的名片,也成為眾多旅游者的游覽目的地.今有一旅游團(tuán)乘游船從奧體公園碼頭出發(fā)順流而下至漕運(yùn)碼頭,又立即逆水返回奧體公園碼頭,已知游船在順?biāo)械乃俣葹?,在逆水中的速度為,則游船此次行程的平均速度V與的大小關(guān)系是()A. B.C. D.7.下列說(shuō)法正確的個(gè)數(shù)有()(?。┟}“若,則”的否命題為:“若,則”;(ⅱ)“,”的否定為“,使得”;(ⅲ)命題“若,則有實(shí)根”為真命題;(ⅳ)命題“若,則”的否命題為真命題;A.1個(gè) B.2個(gè)C.3個(gè) D.4個(gè)8.如圖,點(diǎn)A的坐標(biāo)為,點(diǎn)C的坐標(biāo)為,函數(shù),若在矩形內(nèi)隨機(jī)取一點(diǎn),則此點(diǎn)取自陰影部分的概率等于()A. B.C. D.9.若函數(shù)的圖象如圖所示,則函數(shù)的導(dǎo)函數(shù)的圖象可能是()A. B.C D.10.已知角的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,始邊與x軸的非負(fù)半軸重合,角終邊上有一點(diǎn),為銳角,且,則()A. B.C. D.11.如果在一實(shí)驗(yàn)中,測(cè)得的四組數(shù)值分別是,則y與x之間的回歸直線方程是()A. B.C. D.12.直線與圓相交于點(diǎn),點(diǎn)是坐標(biāo)原點(diǎn),若是正三角形,則實(shí)數(shù)的值為A.1 B.-1C. D.二、填空題:本題共4小題,每小題5分,共20分。13.展開(kāi)式中的系數(shù)是___________.14.已知雙曲線,則圓的圓心C到雙曲線漸近線的距離為_(kāi)_____15.,成立為真命題,則實(shí)數(shù)的取值范圍______.16.已知曲線與曲線有相同的切線,則________三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在二項(xiàng)式的展開(kāi)式中;(1)若,求常數(shù)項(xiàng);(2)若第4項(xiàng)的系數(shù)與第7項(xiàng)的系數(shù)比為,求:①二項(xiàng)展開(kāi)式中的各項(xiàng)的二項(xiàng)式系數(shù)之和;②二項(xiàng)展開(kāi)式中各項(xiàng)的系數(shù)之和18.(12分)紅鈴蟲(chóng)是棉花的主要害蟲(chóng)之一,也侵害木棉、錦葵等植物.為了防治蟲(chóng)害,從根源上抑制害蟲(chóng)數(shù)量.現(xiàn)研究紅鈴蟲(chóng)的產(chǎn)卵數(shù)和溫度的關(guān)系,收集到7組溫度和產(chǎn)卵數(shù)的觀測(cè)數(shù)據(jù)于表Ⅰ中.根據(jù)繪制的散點(diǎn)圖決定從回歸模型①與回歸模型②中選擇一個(gè)來(lái)進(jìn)行擬合表Ⅰ溫度x/℃20222527293135產(chǎn)卵數(shù)y/個(gè)711212465114325(1)請(qǐng)借助表Ⅱ中的數(shù)據(jù),求出回歸模型①的方程:表Ⅱ(注:表中)18956725.271627810611.06304041.86825.09(2)類似的,可以得到回歸模型②的方程為,試求兩種模型下溫度為時(shí)的殘差;(3)若求得回歸模型①的相關(guān)指數(shù),回歸模型②的相關(guān)指數(shù),請(qǐng)結(jié)合(2)說(shuō)明哪個(gè)模型的擬合效果更好參考數(shù)據(jù):.附:回歸方程中,相關(guān)指數(shù).19.(12分)已知橢圓與雙曲線有相同的焦點(diǎn),且的短軸長(zhǎng)為(1)求的方程;(2)若直線與交于P,Q兩點(diǎn),,且的面積為,求k20.(12分)如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,側(cè)棱底面ABCD,,,E為PB中點(diǎn),F(xiàn)為PC上一點(diǎn),且(1)求證:;(2)求平面DEF與平面ABCD所成銳二面角的余弦值21.(12分)已知拋物線的焦點(diǎn)為F,傾斜角為45°的直線m過(guò)點(diǎn)F,若此拋物線上存在3個(gè)不同的點(diǎn)到m的距離為,求此拋物線的準(zhǔn)線方程22.(10分)已知圓C1圓心為坐標(biāo)原點(diǎn),且與直線相切(1)求圓C1的標(biāo)準(zhǔn)方程;(2)若直線l過(guò)點(diǎn)M(1,2),直線l被圓C1所截得的弦長(zhǎng)為,求直線l的方程
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】利用向量三角形法則、平行四邊形法則、向量共線定理即可得出【詳解】如圖所示,∵=+,又=,=-,=,∴=+,故選:B2、B【解析】利用余弦型函數(shù)的周期公式可求得的值,由結(jié)合的取值范圍可求得的值.【詳解】由已知可得,且,因此,.故選:B.3、A【解析】首先求出圓的圓心坐標(biāo)與半徑,再設(shè)圓心關(guān)于直線對(duì)稱的點(diǎn)的坐標(biāo)為,即可得到方程組,求出、,即可得到圓心坐標(biāo),從而求出對(duì)稱圓的方程;【詳解】解:圓的圓心為,半徑,設(shè)圓心關(guān)于直線對(duì)稱的點(diǎn)的坐標(biāo)為,則,解得,即圓關(guān)于直線對(duì)稱的圓的圓心為,半徑,所以對(duì)稱圓的方程為;故選:A4、D【解析】由圓柱的側(cè)面積公式直接可得.【詳解】故選:D5、A【解析】求出函數(shù)圖象的對(duì)稱中心,結(jié)合函數(shù)圖象平移變換可得結(jié)果.【詳解】因?yàn)?,所以,,所以,函?shù)圖象的對(duì)稱中心為,將函數(shù)的圖象向右平移個(gè)單位,再將所得圖象向下平移個(gè)單位長(zhǎng)度,可得到奇函數(shù)的圖象,即函數(shù)為奇函數(shù).故選:A6、A【解析】求出平均速度V,進(jìn)而結(jié)合基本不等式求得答案.【詳解】易知,設(shè)奧運(yùn)公園碼頭到漕運(yùn)碼頭之間的距離為1,則游船順流而下的時(shí)間為,逆流而上的時(shí)間為,則平均速度,由基本不等式可得,而,當(dāng)且僅當(dāng)時(shí),兩個(gè)不等式都取得“=”,而根據(jù)題意,于是.故選:A.7、B【解析】根據(jù)四種命題的結(jié)構(gòu)特征可判斷(?。áぃ┑恼`,根據(jù)全稱命題的否定形式可判斷(ⅱ)的正誤,根據(jù)判別式的正誤可判斷(ⅲ)的正誤.【詳解】命題“若,則”的否命題”為“若,則”,故(?。╁e(cuò)誤.“,”的否定為“,使得”,故(ⅱ)正確,當(dāng)時(shí),,故有實(shí)根,故(ⅲ)正確,“若,則”的否命題為“若,則”,取,則,故命題若,則為假命題,故(ⅳ)錯(cuò)誤.故選:B8、A【解析】分別由矩形面積公式與微積分幾何意義計(jì)算陰影部分和矩形部分的面積,最后由幾何概型概率計(jì)算公式計(jì)算即可.【詳解】由已知,矩形的面積為4,陰影部分的面積為,由幾何概型公式可得此點(diǎn)取自陰影部分的概率等于,故選:A9、C【解析】由函數(shù)的圖象可知其單調(diào)性情況,再由導(dǎo)函數(shù)與原函數(shù)的關(guān)系即可得解.【詳解】由函數(shù)的圖象可知,當(dāng)時(shí),從左向右函數(shù)先增后減,故時(shí),從左向右導(dǎo)函數(shù)先正后負(fù),故排除AB;當(dāng)時(shí),從左向右函數(shù)先減后增,故時(shí),從左向右導(dǎo)函數(shù)先負(fù)后正,故排除D.故選:C.10、C【解析】根據(jù)角終邊上有一點(diǎn),得到,再根據(jù)為銳角,且,求得,再利用兩角差的正切函數(shù)求解.【詳解】因?yàn)榻墙K邊上有一點(diǎn),所以,又因?yàn)闉殇J角,且,所以,所以,故選:C11、B【解析】根據(jù)已知數(shù)據(jù)求樣本中心點(diǎn),由樣本中心點(diǎn)在回歸直線上,將其代入各選項(xiàng)的回歸方程驗(yàn)證即可.【詳解】由題設(shè),,因?yàn)榛貧w直線方程過(guò)樣本點(diǎn)中心,A:,排除;B:,滿足;C:,排除;D:,排除.故選:B12、C【解析】由題意得,直線被圓截得的弦長(zhǎng)等于半徑.圓的圓心坐標(biāo),設(shè)圓半徑為,圓心到直線的距離為,則由條件得,整理得所以,解得.選C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)二項(xiàng)展開(kāi)式的通項(xiàng)公式,可知展開(kāi)式中含的項(xiàng),以及展開(kāi)式中含的項(xiàng),再根據(jù)組合數(shù)的運(yùn)算即可求出結(jié)果.【詳解】解:由題意可得,展開(kāi)式中含的項(xiàng)為,而展開(kāi)式中含的項(xiàng)為,所以的系數(shù)為.故答案為:.14、2【解析】求出圓心和雙曲線的漸近線方程,即得解.【詳解】解:由題得圓的圓心為,雙曲線的漸近線方程為,即.所以圓心到雙曲線漸近線的距離為.故答案為:215、.【解析】根據(jù)題意轉(zhuǎn)化為,恒成立,得到,即可求解.【詳解】由題意,命題,成立為真命題,即,恒成立,當(dāng)時(shí),,所以,即實(shí)數(shù)的取值范圍.故答案為:.16、0【解析】設(shè)切點(diǎn)分別為,.利用導(dǎo)數(shù)的幾何意義可得,則.由,,計(jì)算可得,進(jìn)而求得點(diǎn)坐標(biāo)代入方程即可求得結(jié)果.【詳解】設(shè)切點(diǎn)分別為,由題意可得,則,即因?yàn)?,,所以,即,解得,所以,則,解得故答案為:0三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)60(2)①1024;②1【解析】(1)根據(jù)二項(xiàng)式定理求解(2)根據(jù)二項(xiàng)式定理與條件求解,二項(xiàng)式系數(shù)之和為,系數(shù)和可賦值【小問(wèn)1詳解】若,則,(,…,9)令∴∴常數(shù)項(xiàng)為.【小問(wèn)2詳解】,(,…,),解得①②令,得系數(shù)和為18、(1)(或)(2)模型①:1.54;模型②:65.54(3)模型①【解析】(1)利用兩邊取自然對(duì)數(shù),利用表中的數(shù)據(jù)即可求解;(2)分別計(jì)算模型①、②在時(shí)殘差;(3)根據(jù)相關(guān)指數(shù)的大小判斷摸型①、②的殘差平方和,再得出那個(gè)模型的擬合效果更好.【小問(wèn)1詳解】由,得,令,得,由表Ⅱ數(shù)據(jù)可得,,,所以,所以回歸方程為(或).【小問(wèn)2詳解】由題意可知,模型①在時(shí)殘差為,模型②在時(shí)殘差為.【小問(wèn)3詳解】因?yàn)?,即模型①的相關(guān)指數(shù)大于模型②的相關(guān)指數(shù),由相關(guān)指數(shù)公式知,模型①的殘差平方和小于模型②的殘差平方和,因此模型①得到的數(shù)據(jù)更接近真實(shí)數(shù)據(jù),所以模型①的擬合效果更好.19、(1)(2)或k=1.【解析】(1)根據(jù)題意求得雙曲線的焦點(diǎn)即知橢圓焦點(diǎn),結(jié)合橢圓短軸長(zhǎng),可求得橢圓標(biāo)準(zhǔn)方程;(2)將直線方程和橢圓方程聯(lián)立,整理得,從而得到根與系數(shù)的關(guān)系式,然后求出弦長(zhǎng)以及到直線PQ的距離,進(jìn)而表示出,由題意得關(guān)于k的方程,解得答案.【小問(wèn)1詳解】雙曲線即,故雙曲線交點(diǎn)坐標(biāo)為,由此可知橢圓焦點(diǎn)也為,又的短軸長(zhǎng)為,故,所以,故橢圓的方程為;【小問(wèn)2詳解】聯(lián)立,整理得:,其,設(shè),則,所以=,點(diǎn)到直線PQ的距離為,所以=,又的面積為,則=,解得或k=1.20、(1)證明見(jiàn)解析(2)【解析】(1)依題意可得,再由,即可得到平面,從而建立空間直角坐標(biāo)系,利用空間向量法證明即可;(2)利用空間向量法求出二面角的余弦值;【小問(wèn)1詳解】證明:因?yàn)槠矫?,平面,平面,則,,又,因?yàn)?,,平面,所以平面,故以點(diǎn)為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系如圖所示,則,0,,,0,,,1,,,1,,,0,,,所以,則,所以,故;【小問(wèn)2詳解】解:解:因?yàn)椋O(shè)平面的法向量為,則,即,令,則,,故,因?yàn)榈酌?,所以的一個(gè)法向量為,所以,故平面與平面夾角的余弦值為21、【解析】設(shè)出直線m的方程,利用方程組聯(lián)立、一元二次方程根的判別式求出與直線m平行的拋物線的切線方程,結(jié)合平行線間距離公式進(jìn)行求解即可.【詳解】拋物線的焦點(diǎn)坐標(biāo)為:,設(shè)直線m為,設(shè)為與拋物線相切,聯(lián)立直線與拋物線方程,化簡(jiǎn)整理可得,,則,解得,且,故兩平行線間的距離,解得,故所求的準(zhǔn)線方程為22、(1)(2)或【解析】(1)由圓心到直線的距離求得半徑,可得圓C1的標(biāo)準(zhǔn)方程;(2)當(dāng)直線的斜率不存
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 貧困村貸款申請(qǐng)書(shū)范文
- 大學(xué)生社會(huì)創(chuàng)業(yè)申請(qǐng)書(shū)
- 干部自愿提前退休申請(qǐng)書(shū)
- 建筑工程安全施工與監(jiān)理指南
- 離職申請(qǐng)書(shū)不能寫(xiě)哪些字
- 倩女幽魂退出幫會(huì)申請(qǐng)書(shū)
- 2026年高溫混凝土的研發(fā)現(xiàn)狀與應(yīng)用
- 2025年倉(cāng)儲(chǔ)物流作業(yè)規(guī)范及流程
- 酒店安全管理規(guī)范指南
- 攝影部辭職申請(qǐng)書(shū)
- 46566-2025溫室氣體管理體系要求培訓(xùn)教材
- 【Artlist】2026年人工智能行業(yè)趨勢(shì)報(bào)告:顛覆規(guī)則與未來(lái)前瞻
- 三管三必須培訓(xùn)
- 仇永鋒一針鎮(zhèn)痛課件
- 個(gè)人有關(guān)事項(xiàng)報(bào)告培訓(xùn)
- DB42∕T 1655-2021 湖北省建設(shè)項(xiàng)目文物影響評(píng)估報(bào)告編制規(guī)范
- 2026年南陽(yáng)科技職業(yè)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性考試必刷測(cè)試卷完美版
- 2026屆廣東省佛山市南海區(qū)石門(mén)實(shí)驗(yàn)中學(xué)數(shù)學(xué)七上期末達(dá)標(biāo)測(cè)試試題含解析
- 醫(yī)保結(jié)算清單質(zhì)控管理制度及流程
- 河南省2025年度河南省氣象部門(mén)招聘應(yīng)屆高校畢業(yè)生24名(第2號(hào))筆試歷年參考題庫(kù)附帶答案詳解
- 腹部手術(shù)圍手術(shù)期疼痛管理指南(2025年)解讀課件
評(píng)論
0/150
提交評(píng)論