陜西省西安市高新一中、交大附中、師大附中2026屆數(shù)學(xué)高二上期末質(zhì)量檢測試題含解析_第1頁
陜西省西安市高新一中、交大附中、師大附中2026屆數(shù)學(xué)高二上期末質(zhì)量檢測試題含解析_第2頁
陜西省西安市高新一中、交大附中、師大附中2026屆數(shù)學(xué)高二上期末質(zhì)量檢測試題含解析_第3頁
陜西省西安市高新一中、交大附中、師大附中2026屆數(shù)學(xué)高二上期末質(zhì)量檢測試題含解析_第4頁
陜西省西安市高新一中、交大附中、師大附中2026屆數(shù)學(xué)高二上期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

陜西省西安市高新一中、交大附中、師大附中2026屆數(shù)學(xué)高二上期末質(zhì)量檢測試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若,則下列結(jié)論不正確的是()A. B.C. D.2.已知雙曲線,則雙曲線的漸近線方程為()A. B.C. D.3.若方程表示焦點在y軸上的雙曲線,則k的取值范圍是()A. B.C. D.4.?dāng)?shù)列的通項公式是()A. B.C. D.5.若拋物線的焦點與橢圓的右焦點重合,則的值為A. B.C. D.6.小明騎車上學(xué),開始時勻速行駛,途中因交通堵塞停留了一段時間,后為了趕時間加快速度行駛.與以上事件吻合得最好的圖象是()A. B.C. D.7.設(shè)為坐標(biāo)原點,直線與雙曲線的兩條漸近線分別交于兩點,若的面積為8,則的焦距的最小值為()A.4 B.8C.16 D.328.2021年小林大學(xué)畢業(yè)后,9月1日開始工作,他決定給自己開一張儲蓄銀行卡,每月的10號存錢至該銀行卡(假設(shè)當(dāng)天存錢次日到賬).2021年9月10日他給卡上存入1元,以后每月存的錢數(shù)比上個月多一倍,則他這張銀行卡賬上存錢總額(不含銀行利息)首次達(dá)到1萬元的時間為()A.2022年12月11日 B.2022年11月11日C.2022年10月11日 D.2022年9月11日9.①“若,則互為相反數(shù)”的逆命題;②“若,則”的逆否命題;③“若,則”的否命題.其中真命題的個數(shù)為()A.0 B.1C.2 D.310.若是等差數(shù)列的前項和,,則()A.13 B.39C.45 D.2111.從裝有2個紅球和2個白球的口袋內(nèi)任取兩個球,則下列選項中的兩個事件為互斥事件的是()A.至多有1個白球;都是紅球 B.至少有1個白球;至少有1個紅球C.恰好有1個白球;都是紅球 D.至多有1個白球;至多有1個紅球12.設(shè),,,則,,大小關(guān)系是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某n重伯努利試驗中,事件A發(fā)生的概率為p,事件A發(fā)生的次數(shù)記為X,,,則______14.若直線與直線相互平行,則實數(shù)___________.15.已知為拋物線的焦點,為拋物線上的任意一點,點,則的最小值為______.16.已知拋物線的焦點F在直線上,過點F的直線l與拋物線C相交于A,B兩點,O為坐標(biāo)原點,△的面積是△面積的4倍,則直線l的方程為____________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓焦距為,點在橢圓C上(1)求橢圓C的方程;(2)過點的直線與C交于M,N兩點,點R是直線上任意一點,設(shè)直線的斜率分別為,若,求的方程18.(12分)如圖1,在中,,,,分別是,邊上的中點,將沿折起到的位置,使,如圖2(1)求點到平面的距離;(2)在線段上是否存在一點,使得平面與平面夾角的余弦值為.若存在,求出長;若不存在,請說明理由19.(12分)已知兩動圓:和:,把它們的公共點的軌跡記為曲線,若曲線與軸的正半軸的交點為,取曲線上的相異兩點、滿足:且點與點均不重合.(1)求曲線的方程;(2)證明直線恒經(jīng)過一定點,并求此定點的坐標(biāo);20.(12分)已知橢圓上頂點與橢圓的左,右頂點連線的斜率之積為(1)求橢圓C的離心率;(2)若直線與橢圓C相交于A,B兩點,,求橢圓C的標(biāo)準(zhǔn)方程21.(12分)已知橢圓C:的離心率為,點為橢圓C上一點(1)求橢圓C的方程;(2)若M,N是橢圓C上的兩個動點,且的角平分線總是垂直于y軸,求證:直線MN的斜率為定值22.(10分)在平面直角坐標(biāo)系xOy中,橢圓C:(a>b>0)的左、右焦點分別為,其離心率,且橢圓C經(jīng)過點.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)過點M作兩條不同的直線與橢圓C分別交于點A,B(均異于點M).若∠AMB的角平分線與y軸平行,試探究直線AB的斜率是否為定值?若是,請給予證明;若不是,請說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由得出,再利用不等式的基本性質(zhì)和基本不等式來判斷各選項中不等式的正誤.【詳解】,,,,A選項正確;,B選項錯誤;由基本不等式可得,當(dāng)且僅當(dāng)時等號成立,,則等號不成立,所以,C選項正確;,,D選項正確.故選:B.【點睛】本題考查不等式正誤的判斷,涉及不等式的基本性質(zhì)和基本不等式,考查推理能力,屬于基礎(chǔ)題.2、A【解析】求出、的值,可得出雙曲線的漸近線方程.【詳解】在雙曲線中,,,因此,該雙曲線的漸近線方程為.故選:A.3、B【解析】由條件可得,即可得到答案.【詳解】方程表示焦點在y軸上的雙曲線所以,即故選:B4、C【解析】根據(jù)數(shù)列前幾項,歸納猜想出數(shù)列的通項公式.【詳解】依題意,數(shù)列的前幾項為:;;;……則其通項公式.故選C.【點睛】本小題主要考查歸納推理,考查數(shù)列通項公式的猜想,屬于基礎(chǔ)題.5、D【解析】解:橢圓的右焦點為(2,0),所以拋物線的焦點為(2,0),則,故選D6、C【解析】先研究四個選項中圖象的特征,再對照小明上學(xué)路上的運動特征,兩者對應(yīng)即可選出正確選項.【詳解】考查四個選項,橫坐標(biāo)表示時間,縱坐標(biāo)表示的是離開學(xué)校的距離,由此知,此函數(shù)圖象一定是下降的,由此排除A;再由小明騎車上學(xué),開始時勻速行駛可得出圖象開始一段是直線下降型,又途中因交通堵塞停留了一段時間,故此時有一段函數(shù)圖象與x軸平行,由此排除D,之后為了趕時間加快速度行駛,此一段時間段內(nèi)函數(shù)圖象下降的比較快,由此可確定C正確,B不正確故選C【點睛】本題考查函數(shù)的表示方法,關(guān)鍵是理解坐標(biāo)系的度量與小明上學(xué)的運動特征,屬于基礎(chǔ)題.7、B【解析】因為,可得雙曲線的漸近線方程是,與直線聯(lián)立方程求得,兩點坐標(biāo),即可求得,根據(jù)的面積為,可得值,根據(jù),結(jié)合均值不等式,即可求得答案.【詳解】雙曲線的漸近線方程是直線與雙曲線的兩條漸近線分別交于,兩點不妨設(shè)為在第一象限,在第四象限聯(lián)立,解得故聯(lián)立,解得故面積為:雙曲線其焦距為當(dāng)且僅當(dāng)取等號的焦距的最小值:故選:B.【點睛】本題主要考查了求雙曲線焦距的最值問題,解題關(guān)鍵是掌握雙曲線漸近線的定義和均值不等式求最值方法,在使用均值不等式求最值時,要檢驗等號是否成立,考查了分析能力和計算能力,屬于中檔題.8、C【解析】分析可得每月所存錢數(shù)依次成首項為1,公比為2的等比數(shù)列,其前n項和為,分析首次達(dá)到1萬元的值,即得解【詳解】依題意可知,小林從第一個月開始,每月所存錢數(shù)依次成首項為1,公比為2的等比數(shù)列,其前n項和為.因為為增函數(shù),且,所以第14個月的10號存完錢后,他這張銀行卡賬上存錢總額首次達(dá)到1萬元,即2022年10月11日他這張銀行卡賬上存錢總額首次達(dá)到1萬元.故選:C9、B【解析】寫出逆命題判斷①;寫出逆否命題判斷②;寫出否命題判斷③.【詳解】①:“若,則互為相反數(shù)”的逆命題為:“若互為相反數(shù),則”,是真命題;②:“若,則”的逆否命題為:“若,則”.因為當(dāng)時,有,但不成立.故“若,則”是假命題.③:“若,則”的否命題為:“若,則”.因為當(dāng)時,有,但是,即不成立.故“若,則”是假命題..故選:B10、B【解析】先根據(jù)等差數(shù)列的通項公式求出,然后根據(jù)等差數(shù)列的求和公式及等差數(shù)列的下標(biāo)性質(zhì)求得答案.【詳解】設(shè)等差數(shù)列的公差為d,則,則.故選:B.11、C【解析】根據(jù)試驗過程進(jìn)行分析,利用互斥事件的定義對四個選項一一判斷即可.【詳解】對于A:“至多有1個白球”包含都是紅球和一紅一白,“都是紅球”包含都是紅球,所以“至多有1個白球”與“都是紅球”不是互斥事件.故A錯誤;對于B:“至少有1個白球”包含都是白球和一紅一白,“至少有1個紅球”包含都是紅球和一紅一白,所以“至少有1個白球”與“至少有1個紅球”不是互斥事件.故B錯誤;對于C:“恰好有1個白球”包含一紅一白,“都是紅球”包含都是紅球,所以“恰好有1個白球”與“都是紅球”是互斥事件.故C錯誤;對于D:“至多有1個紅球”包含都是白球和一紅一白,“至多有1個白球”包含都是紅球和一紅一白,所以“至多有1個白球”與“至多有1個紅球”不是互斥事件.故D錯誤.故選:C12、A【解析】構(gòu)造函數(shù),根據(jù)的單調(diào)性可得(3),從而得到,,的大小關(guān)系【詳解】考查函數(shù),則,在上單調(diào)遞增,,(3),即,,故選:【點睛】本題考查了利用函數(shù)的單調(diào)性比較大小,考查了構(gòu)造法和轉(zhuǎn)化思想,屬基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13、##0.2【解析】根據(jù)二項分布的均值和方差的計算公式可求解【詳解】依題意得X服從二項分布,則,解得,故答案為:14、##【解析】由題意可得,從而可求出的值【詳解】因為直線與直線相互平行,所以,解得,故答案為:15、【解析】由拋物線的幾何性質(zhì)知:,由圖知為的最小值,求長度即可.【詳解】點是拋物線的焦點,其準(zhǔn)線方程為,作于,作于,∴,當(dāng)且僅當(dāng)為與拋物線的交點時取得等號,∴的最小值為.故答案為:.16、【解析】設(shè)A,B分別為,由焦點在已知直線上求F坐標(biāo)及拋物線方程,再根據(jù)題設(shè)三角形的面積關(guān)系可得,并設(shè)直線l為,聯(lián)立拋物線應(yīng)用韋達(dá)定理求參數(shù)m,即可知直線l的方程.【詳解】設(shè)點A,B的坐標(biāo)分別為,直線,令可得,故焦點F的坐標(biāo)為,所以,由,,而△的面積是△面積的4倍,所以,即,設(shè)直線l為,聯(lián)立方程,消去x后整理為,所以,代入,有,可得,則直線l的方程為故答案為:.【點睛】關(guān)鍵點點睛:根據(jù)拋物線焦點位置及其所在直線求拋物線方程,由面積關(guān)系得到交點縱坐標(biāo)的數(shù)量關(guān)系,注意交點在x軸兩側(cè),再設(shè)直線聯(lián)立拋物線求參數(shù)即可.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)由焦距為解出,再把點代入橢圓方程中,即可解出答案.(2)根據(jù)題意求出當(dāng)直線與軸重合時,由求出值,即求出的方程為.故只需證:當(dāng)直線與軸不重合時,上任意一點均使,設(shè)出直線方程與橢圓進(jìn)行聯(lián)立,化簡得證,即可得到答案.【小問1詳解】.由于點在橢圓C上,則故橢圓C的方程為.【小問2詳解】當(dāng)直線與軸重合時,是橢圓的左右頂點,不妨設(shè),設(shè),則是上的任意一點,即方程對任意實數(shù)都成立,此時的方程為.故只需證:當(dāng)直線與軸不重合時,上任意一點均使即可,設(shè)直線的方程為,,設(shè)則由y得證.故的方程為.18、(1)(2)存在,【解析】(1)根據(jù)題意分別由已知條件計算出的面積和的面積,利用求解,(2)如圖建立空間直角坐標(biāo)系,設(shè),然后求出平面與平面的法向量,利用向量平夾角公式列方程可求得結(jié)果小問1詳解】在中,,因為,分別是,邊上的中點,所以∥,,所以,所以,因為,所以平面,所以平面,因為平面,所以,所以,因為平面,平面,所以平面平面,因為,所以,因為,所以是等邊三角形,取的中點,連接,則,,因為平面平面,平面平面,平面,所以平面,中,,所以邊上的高為,所以,在梯形中,,設(shè)點到平面的距離為,因,所以,所以,得,所以點到平面的距離為【小問2詳解】由(1)可知平面,,所以以為原點,建立如圖所示的空間直角坐標(biāo)系,則,設(shè),則,設(shè)平面的法向量為,則,令,則,設(shè)平面的法向量為,則,令,則,則平面與平面夾角的余弦值為,兩邊平方得,,解得或(舍去),所以,所以19、(1);(2)證明見解析,.【解析】(1)設(shè)兩動圓的公共點為,則有,運用橢圓的定義,即可得到,,,進(jìn)而得到的軌跡方程;(2),設(shè),,,,設(shè)出直線方程,聯(lián)立方程組,利用韋達(dá)定理法及向量的數(shù)量積的坐標(biāo)表示,即可得到定點.【小問1詳解】設(shè)兩動圓的公共點為,則有由橢圓的定義可知的軌跡為橢圓,設(shè)方程為,則,,所以曲線的方程是:【小問2詳解】由題意可知:,且直線斜率存在,設(shè),,設(shè)直線:,聯(lián)立方程組,可得,,,因為,所以有,把代入整理化簡得,或舍,因為點與點均不重合,所以直線恒過定點20、(1)(2)【解析】(1)根據(jù)題意,可知,可得,再根據(jù)橢圓的性質(zhì)可得,由此即可求出離心率;(2)將直線與橢圓方程聯(lián)立,由韋達(dá)定理得到,,再根據(jù)弦長公式,建立方程,即可求出的值,進(jìn)而求出橢圓方程.【小問1詳解】解:由題意可知,橢圓上頂點坐標(biāo)為,左右頂點的坐標(biāo)分別為、,∴,即,則又,∴,所以橢圓的離心率;【小問2詳解】解:設(shè),,由得:,∴,,,∴,解得,∴,滿足,∴,∴橢圓C的方程為21、(1);(2)證明見解析.【解析】(1)根據(jù)橢圓的離心率公式,結(jié)合代入法進(jìn)行求解即可;(2)根據(jù)角平分線的性質(zhì),結(jié)合一元二次方程根與系數(shù)關(guān)系、斜率公式進(jìn)行求解即可.【小問1詳解】橢圓的離心率,又,∴∵橢圓C:經(jīng)過點,解得,∴橢圓C的方程為;【小問2詳解】∵∠MPN的角平分線總垂直于y軸,∴MP與NP所在直線關(guān)于直線對稱.設(shè)直線MP的斜率為k,則直線NP的斜率為∴設(shè)直線MP的方程為,直線NP的方程為設(shè)點,由消去y,得∵點在橢圓C上,則有,即同理可得∴,又∴直線MN的斜率為【點睛】關(guān)鍵點睛:由∠

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論