2026屆廣州黃埔區(qū)第二中學(xué)高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第1頁(yè)
2026屆廣州黃埔區(qū)第二中學(xué)高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第2頁(yè)
2026屆廣州黃埔區(qū)第二中學(xué)高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第3頁(yè)
2026屆廣州黃埔區(qū)第二中學(xué)高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第4頁(yè)
2026屆廣州黃埔區(qū)第二中學(xué)高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2026屆廣州黃埔區(qū)第二中學(xué)高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知球O的半徑為2,球心到平面的距離為1,則球O被平面截得的截面面積為()A. B.C. D.2.如圖,已知雙曲線的左右焦點(diǎn)分別為、,,是雙曲線右支上的一點(diǎn),,直線與軸交于點(diǎn),的內(nèi)切圓半徑為,則雙曲線的離心率是()A. B.C. D.3.已知橢圓經(jīng)過(guò)點(diǎn),當(dāng)該橢圓的四個(gè)頂點(diǎn)構(gòu)成的四邊形的周長(zhǎng)最小時(shí),其標(biāo)準(zhǔn)方程為()A. B.C. D.4.下列命題為真命題的是()A.若,則 B.若,則C.若,則 D.若,則5.2021年小林大學(xué)畢業(yè)后,9月1日開(kāi)始工作,他決定給自己開(kāi)一張儲(chǔ)蓄銀行卡,每月的10號(hào)存錢(qián)至該銀行卡(假設(shè)當(dāng)天存錢(qián)次日到賬).2021年9月10日他給卡上存入1元,以后每月存的錢(qián)數(shù)比上個(gè)月多一倍,則他這張銀行卡賬上存錢(qián)總額(不含銀行利息)首次達(dá)到1萬(wàn)元的時(shí)間為()A.2022年12月11日 B.2022年11月11日C.2022年10月11日 D.2022年9月11日6.若兩直線與互相垂直,則k的值為()A.1 B.-1C.-1或1 D.27.已知雙曲線的實(shí)軸長(zhǎng)為10,則該雙曲線的漸近線的斜率為()A. B.C. D.8.若離散型隨機(jī)變量的所有可能取值為1,2,3,…,n,且取每一個(gè)值的概率相同,若,則n的值為()A.4 B.6C.9 D.109.?dāng)?shù)列中,滿足,,設(shè),則()A. B.C. D.10.《九章算術(shù)》是我國(guó)古代內(nèi)容極為豐富的數(shù)學(xué)名著,第九章“勾股”,講述了“勾股定理”及一些應(yīng)用,直角三角形的兩直角邊與斜邊的長(zhǎng)分別稱(chēng)“勾”“股”“弦”,且“”.設(shè)分別是雙曲線的左、右焦點(diǎn),直線交雙曲線左、右兩支于兩點(diǎn),若恰好是的“勾”“股”,則此雙曲線的離心率為()A. B.C.2 D.11.已知雙曲線,則雙曲線M的漸近線方程是()A. B.C. D.12.若直線與互相垂直,則實(shí)數(shù)a的值為()A.-3 B.C. D.3二、填空題:本題共4小題,每小題5分,共20分。13.等差數(shù)列前3項(xiàng)的和為30,前6項(xiàng)的和為100,則它的前9項(xiàng)的和為_(kāi)_____.14.(建三江)函數(shù)在處取得極小值,則=___15.已知曲線與曲線有相同的切線,則________16.已知函數(shù),若關(guān)于的不等式恒成立,則實(shí)數(shù)的取值范圍是__________三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,點(diǎn)是曲線上的動(dòng)點(diǎn)(點(diǎn)在軸左側(cè)),以點(diǎn)為頂點(diǎn)作等腰梯形,使點(diǎn)在此曲線上,點(diǎn)在軸上.設(shè),等腰梯的面積為.(1)寫(xiě)出函數(shù)的解析式,并求出函數(shù)的定義域;(2)當(dāng)為何值時(shí),等腰梯形的面積最大?求出最大面積.18.(12分)如圖,在棱長(zhǎng)為2的正方體中,E,F(xiàn)分別為AB,BC上的動(dòng)點(diǎn),且.(1)求證:;(2)當(dāng)時(shí),求點(diǎn)A到平面的距離.19.(12分)已知函數(shù),曲線在點(diǎn)處的切線與直線垂直(其中為自然對(duì)數(shù)的底數(shù))(1)求的值;(2)是否存在常數(shù),使得對(duì)于定義域內(nèi)的任意,恒成立?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由20.(12分)在平面直角坐標(biāo)系中,雙曲線的左、右兩個(gè)焦點(diǎn)為、,動(dòng)點(diǎn)P滿足(1)求動(dòng)點(diǎn)P的軌跡E的方程;(2)設(shè)過(guò)且不垂直于坐標(biāo)軸的動(dòng)直線l交軌跡E于A、B兩點(diǎn),問(wèn):線段上是否存在一點(diǎn)D,使得以DA、DB為鄰邊的平行四邊形為菱形?若存在,請(qǐng)給出證明:若不存在,請(qǐng)說(shuō)明理由21.(12分)已知拋物線:,直線過(guò)定點(diǎn).(1)若與僅有一個(gè)公共點(diǎn),求直線的方程;(2)若與交于A,B兩點(diǎn),直線OA,OB(其中О為坐標(biāo)原點(diǎn))的斜率分別為,,試探究在,,,中,運(yùn)算結(jié)果是否有為定值的?并說(shuō)明理由.22.(10分)在等差數(shù)列中,,前10項(xiàng)和(1)求列的通項(xiàng)公式;(2)若數(shù)列是首項(xiàng)為1,公比為2的等比數(shù)列,求的前8項(xiàng)和

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】根據(jù)球的性質(zhì)可求出截面圓的半徑即可求解.【詳解】由球的性質(zhì)可知,截面圓的半徑為,所以截面的面積.故選:B2、D【解析】根據(jù)給定條件結(jié)合直角三角形內(nèi)切圓半徑與邊長(zhǎng)的關(guān)系求出雙曲線實(shí)半軸長(zhǎng)a,再利用離心率公式計(jì)算作答.【詳解】依題意,,的內(nèi)切圓半徑,由直角三角形內(nèi)切圓性質(zhì)知:,由雙曲線對(duì)稱(chēng)性知,,于是得,即,又雙曲線半焦距c=2,所以雙曲線的離心率.故選:D【點(diǎn)睛】結(jié)論點(diǎn)睛:二直角邊長(zhǎng)為a,b,斜邊長(zhǎng)為c的直角三角形內(nèi)切圓半徑.3、A【解析】把點(diǎn)代入橢圓方程得,寫(xiě)出橢圓頂點(diǎn)坐標(biāo),計(jì)算四邊形周長(zhǎng)討論它取最小值時(shí)的條件即得解.【詳解】依題意得,橢圓的四個(gè)頂點(diǎn)為,順次連接這四個(gè)點(diǎn)所得四邊形為菱形,其周長(zhǎng)為,,當(dāng)且僅當(dāng),即時(shí)取“=”,由得a2=12,b2=4,所求標(biāo)準(zhǔn)方程為.故選:A【點(diǎn)睛】給定兩個(gè)正數(shù)和(兩個(gè)正數(shù)倒數(shù)和)為定值,求這兩個(gè)正數(shù)倒數(shù)和(兩個(gè)正數(shù)和)的最值問(wèn)題,可借助基本不等式中“1”的妙用解答.4、D【解析】通過(guò)舉反列即可得ABC錯(cuò)誤,利用不等式性質(zhì)可判斷D【詳解】A.當(dāng)時(shí),,但,故A錯(cuò);B.當(dāng)時(shí),,故B錯(cuò);C.當(dāng)時(shí),,但,故C錯(cuò);D.若,則,D正確故選:D5、C【解析】分析可得每月所存錢(qián)數(shù)依次成首項(xiàng)為1,公比為2的等比數(shù)列,其前n項(xiàng)和為,分析首次達(dá)到1萬(wàn)元的值,即得解【詳解】依題意可知,小林從第一個(gè)月開(kāi)始,每月所存錢(qián)數(shù)依次成首項(xiàng)為1,公比為2的等比數(shù)列,其前n項(xiàng)和為.因?yàn)闉樵龊瘮?shù),且,所以第14個(gè)月的10號(hào)存完錢(qián)后,他這張銀行卡賬上存錢(qián)總額首次達(dá)到1萬(wàn)元,即2022年10月11日他這張銀行卡賬上存錢(qián)總額首次達(dá)到1萬(wàn)元.故選:C6、B【解析】根據(jù)互相垂直的兩直線的性質(zhì)進(jìn)行求解即可.【詳解】由,因此直線的斜率為,直線的斜率為,因?yàn)閮芍本€與互相垂直,所以,故選:B7、B【解析】利用雙曲線的實(shí)軸長(zhǎng)為,求出,即可求出該雙曲線的漸近線的斜率.【詳解】由題意,,所以,,所以雙曲線的漸近線的斜率為.故選:B.【點(diǎn)睛】本題考查雙曲線的方程與性質(zhì),考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.8、D【解析】根據(jù)分布列即可求出【詳解】因?yàn)?,所以故選:D9、C【解析】由遞推公式可歸納得,由此可以求出的值【詳解】因?yàn)?,,所以,,,因此故選C【點(diǎn)睛】本題主要考查利用數(shù)列的遞推式求值和歸納推理思想的應(yīng)用,意在考查學(xué)生合情推理的意識(shí)和數(shù)學(xué)建模能力10、A【解析】根據(jù)雙曲線的定義及直角三角形斜邊的中線定理,再結(jié)合雙曲線的離心率公式即可求解.【詳解】如圖所示由題意可知,根據(jù)雙曲線的定義知,是的中點(diǎn)且.在中,是的中點(diǎn),所以,因?yàn)橹本€的斜率為,所以,所以.所以是等邊三角形,.在中,.由雙曲線的定義,得,所以雙曲線的離心率為.故選:A.11、C【解析】由雙曲線的方程直接求出見(jiàn)解析即可.【詳解】由雙曲線,則其漸近線方程為:故選:C12、C【解析】根據(jù)給定條件利用兩條直線互相垂直的關(guān)系列式計(jì)算作答.【詳解】因直線與互相垂直,則,解得,所以實(shí)數(shù)a的值為.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、210【解析】依題意,、、成等差數(shù)列,從而可求得答案【詳解】∵等差數(shù)列{an}的前3項(xiàng)和為30,前6項(xiàng)和為100,即S3=30,S6=100,又S3、S6﹣S3、S9﹣S6成等差數(shù)列,∴2(S6﹣S3)=(S9﹣S6)+S3,即140=S9﹣100+30,解得S9=210.故答案:210【點(diǎn)睛】本題考查等差數(shù)列的性質(zhì),熟練利用、、成等差數(shù)列是關(guān)鍵,屬于中檔題14、【解析】由,令,解得或,且時(shí),;時(shí),;時(shí),,所以當(dāng)時(shí),函數(shù)取得極小值考點(diǎn):導(dǎo)數(shù)在函數(shù)中的應(yīng)用;極值的條件15、0【解析】設(shè)切點(diǎn)分別為,.利用導(dǎo)數(shù)的幾何意義可得,則.由,,計(jì)算可得,進(jìn)而求得點(diǎn)坐標(biāo)代入方程即可求得結(jié)果.【詳解】設(shè)切點(diǎn)分別為,由題意可得,則,即因?yàn)椋?,所以,即,解得,所以,則,解得故答案為:016、【解析】分析:應(yīng)用換元法,令,,不等式恒成立,轉(zhuǎn)化為在恒成立,確定關(guān)系式,即可求得答案.詳解:函數(shù)對(duì)稱(chēng)軸,最小值令,則恒成立,即在上.,在單調(diào)遞增,,解得,即實(shí)數(shù)的取值范圍是故答案為.點(diǎn)睛:本題考查了函數(shù)的單調(diào)性、最值問(wèn)題、不等式恒成立問(wèn)題以及二次函數(shù)的圖象和性質(zhì)等知識(shí),考查了復(fù)合函數(shù)問(wèn)題求解的換元法三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)當(dāng)時(shí)取到最大值,【解析】(1)設(shè)點(diǎn),則根據(jù)題意得,,故;(2)令,研究函數(shù)的單調(diào)性,進(jìn)而得的最值,進(jìn)而得的最大值.【詳解】解:(1)根據(jù)題意,設(shè)點(diǎn),由是曲線上的動(dòng)點(diǎn)得:,由于橢圓與軸交點(diǎn)為,故,所以即:(2)結(jié)合(1),對(duì)兩邊平方得:,令,則,所以當(dāng)時(shí),,當(dāng)時(shí),,所以在區(qū)間單調(diào)遞增,在上單調(diào)遞減,所以在處取到最大值,,所以當(dāng)時(shí),取到最大值,.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究實(shí)際問(wèn)題,考查數(shù)學(xué)應(yīng)用能力與計(jì)算能力,是中檔題.18、(1)證明見(jiàn)解析(2)【解析】(1)如圖,以為軸,為軸,為軸建立空間直角坐標(biāo)系,利用空間向量法分別求出和,再證明即可;(2)利用空間向量的數(shù)量積求出平面的法向量,結(jié)合求點(diǎn)到面距離的向量法即可得出結(jié)果.【小問(wèn)1詳解】證明:如圖,以為軸,為軸,為軸,建立空間直角坐標(biāo)系,則,,,,所以,,所以,故,所以;【小問(wèn)2詳解】當(dāng)時(shí),,,,,則,,,設(shè)是平面的法向量,則由,解得,取,得,設(shè)點(diǎn)A到平面的距離為,則,所以點(diǎn)A到平面的距離為.19、(1)2;(2)存在,.【解析】(1)對(duì)函數(shù)求導(dǎo),利用得的值;(2)討論和分離參數(shù),構(gòu)造新函數(shù)求解最值即可求解【詳解】解:(1),又由題意有(2)由(1)知,此時(shí),由或,所以函數(shù)的單調(diào)減區(qū)間為和要恒成立,即①當(dāng)時(shí),,則要恒成立,令,再令,所以在內(nèi)遞減,所以當(dāng)時(shí),,故,所以在內(nèi)遞增,;②當(dāng)時(shí),lnx>0,則要恒成立,由①可知,當(dāng)時(shí),,所以?xún)?nèi)遞增,所以當(dāng)時(shí),,故,所以在內(nèi)遞增,綜合①②可得,即存在常數(shù)滿足題意20、(1);(2)存在,理由見(jiàn)解析.【解析】(1)根據(jù)題意用定義法求解軌跡方程;(2)在第一問(wèn)的基礎(chǔ)上,設(shè)出直線l的方程,聯(lián)立橢圓方程,用韋達(dá)定理表達(dá)出兩根之和,兩根之積,求出直線l的垂直平分線,從而得到D點(diǎn)坐標(biāo),證明出結(jié)論.【小問(wèn)1詳解】由題意得:,所以,,而,故動(dòng)點(diǎn)P的軌跡E的方程為以點(diǎn)、為焦點(diǎn)的橢圓方程,由得:,,所以動(dòng)點(diǎn)P的軌跡E的方程為;【小問(wèn)2詳解】存,理由如下:顯然,直線l的斜率存在,設(shè)為,聯(lián)立橢圓方程得:,設(shè),,則,,要想以DA、DB為鄰邊的平行四邊形為菱形,則點(diǎn)D為AB垂直平分線上一點(diǎn),其中,,則,故AB的中點(diǎn)坐標(biāo)為,則AB的垂直平分線為:,令得:,且無(wú)論為何值,,點(diǎn)D在線段上,滿足題意.21、(1)或或(2)為定值,而,,均不為定值【解析】(1)過(guò)拋物線外一定點(diǎn)的直線恰好與該拋物線只有一個(gè)交點(diǎn),則分兩類(lèi)分別討論,一是直線與拋物線的對(duì)稱(chēng)軸平行,二是直線與拋物線相切;(2)聯(lián)立直線的方程與拋物線的方程,根據(jù)韋達(dá)定理,分別表示出,,,為直線斜率的形式,便可得出結(jié)果.【小問(wèn)1詳解】過(guò)點(diǎn)的直線與拋物線僅有一個(gè)公共點(diǎn),則該直線可能與拋物線的對(duì)稱(chēng)軸平行,也可能與拋物線相切,下面分兩種情況討論:當(dāng)直線可能與拋物線的對(duì)稱(chēng)軸平行時(shí),則有:當(dāng)直線與拋物線相切時(shí),由于點(diǎn)在軸上方,且在拋物線外,則存在兩條直線與拋物線相切:易知:是其中一條直線另一條直線與拋物線上方相切時(shí),不妨設(shè)直線的斜率為,則有:聯(lián)立直線與拋物線可得:可得:則有:解得:故此時(shí)的直線的方程為:綜上,直線的方程為:或或【小問(wèn)2詳解】若與交于A,B兩點(diǎn),

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論