版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山西省太原市第二十一中學2026屆高二上數學期末質量跟蹤監(jiān)視試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.圓的圓心和半徑分別是()A. B.C. D.2.過雙曲線右焦點F作雙曲線一條漸近線的垂線,垂足為A,與另一條漸近線交于點B,若,則雙曲線C的離心率為()A.或 B.2或C.或 D.2或3.已知向量,若,則()A. B.5C.4 D.4.等差數列中,,則()A. B.C. D.5.已知全集,集合,則()A. B.C. D.6.已知拋物線y2=4x的焦點為F,定點,M為拋物線上一點,則|MA|+|MF|的最小值為()A.3 B.4C.5 D.67.在正三棱錐S?ABC中,M、N分別是棱SC、BC的中點,且,若側棱,則正三棱錐S?ABC外接球的表面積是()A. B.C. D.8.過橢圓的左焦點作弦,則最短弦的長為()A. B.2C. D.49.如圖,在四面體中,,分別是,的中點,則()A. B.C. D.10.若正整數N除以正整數m后的余數為n,則記為,如.如圖所示的程序框圖的算法源于我國古代聞名中外的“中國剩余定理”.執(zhí)行該程序框圖,則輸出的i等于()A.7 B.10C.13 D.1611.設直線與雙曲線(,)的兩條漸近線分別交于,兩點,若點滿足,則該雙曲線的離心率是()A. B.C. D.12.2021年是中國共產黨百年華誕,3月24日,中宣部發(fā)布中國共產黨成立100周年慶?;顒訕俗R(如圖1).其中“100”的兩個“0”設計為兩個半徑為R的相交大圓,分別內含一個半徑為r的同心小圓,且同心小圓均與另一個大圓外切(如圖2).已知,則由其中一個圓心向另一個小圓引的切線長與兩大圓的公共弦長之比為()A. B.3C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓的左、右焦點分別為,,上頂點為A,直線與橢圓C的另一個交點為B,則的面積為___________.14.若雙曲線的一條漸近線被圓所截得的弦長為2,則該雙曲線的實軸長為______.15.已知正方形的邊長為分別是邊的中點,沿將四邊形折起,使二面角的大小為,則兩點間的距離為__________16.數據:1,1,3,4,6的方差是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)給出以下三個條件:①;②,,成等比數列;③.請從這三個條件中任選一個,補充到下面問題中,并完成作答.若選擇多個條件分別作答,以第一個作答計分已知公差不為0的等差數列的前n項和為,,______(1)求數列的通項公式;(2)若,令,求數列的前n項和18.(12分)已知,(1)當時,求函數的單調遞減區(qū)間;(2)當時,,求實數a的取值范圍19.(12分)已知數列滿足,且,,成等比數列.(1)求數列的通項公式;(2)設數列的前項和為,求的最小值及此時的值.20.(12分)已知各項均為正數的等比數列的前n項和為,且,(1)求數列的通項公式;(2)設,求數列的前n項和21.(12分)三棱柱中,側面為菱形,,,,(1)求證:面面;(2)在線段上是否存在一點M,使得二面角為,若存在,求出的值,若不存在,請說明理由22.(10分)已知圓.(1)求過點M(2,1)的圓的切線方程;(2)直線過點且被圓截得的弦長為2,求直線的方程;(3)已知圓的圓心在直線y=1上,與y軸相切,且與圓相外切,求圓的標準方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】將圓的方程化成標準方程,即可求解.【詳解】解:.故選:B.2、D【解析】求得點A,B的坐標,利用轉化為坐標比求解.【詳解】不妨設直線,由題意得,解得,即;由得,即,因為,所以,所以當時,,;當時,,則,故選:D3、B【解析】根據向量垂直列方程,化簡求得.【詳解】由于,所以.故選:B4、C【解析】由等差數列的前項和公式和性質進行求解.【詳解】由題意,得.故選:C.5、B【解析】根據題意先求出,再利用交集定義即可求解.【詳解】全集,集合,則,故故選:B6、B【解析】作出圖象,過點M作準線的垂線,垂足為H,結合圖形可得當且僅當三點M,A,H共線時|MA|+|MH|最小,求解即可【詳解】過點M作準線的垂線,垂足為H,由拋物線的定義可知|MF|=|MH|,則問題轉化為|MA|+|MH|的最小值,結合圖形可得當且僅當三點M,A,H共線時|MA|+|MH|最小,其最小值為.故選:B7、A【解析】由題意推出平面,即平面,,將此三棱錐補成正方體,則它們有相同的外接球,正方體的對角線就是球的直徑,求出直徑即可求出球的體積【詳解】∵,分別為棱,的中點,∴,∵三棱錐為正棱錐,作平面,所以是底面正三角的中心,連接并延長交與點,∵底面是正三角形,,平面∴,,∵,平面,平面,∴平面,∵平面,∴,∴,又∵,而,且,平面,∴平面,∴平面,∴,因為S?ABC是正三棱錐。所以,以,,為從同一定點出發(fā)的正方體三條棱,將此三棱錐補成以正方體,則它們有相同的外接球,正方體的體對角線就是球的直徑,,所以.故選:A.8、A【解析】求出橢圓的通徑,即可得到結果【詳解】過橢圓的左焦點作弦,則最短弦的長為橢圓的通徑:故選:A9、A【解析】利用向量的加法法則直接求解.【詳解】在四面體中,,分別是,的中點,故選:A10、C【解析】根據“中國剩余定理”,進而依次執(zhí)行循環(huán)體,最后求得答案.【詳解】由題意,第一步:,余數不為1;第二步:,余數不為1;第三步:,余數為1,執(zhí)行第二個判斷框,余數不為2;第四步:,執(zhí)行第一個判斷框,余數為1,執(zhí)行第二個判斷框,余數為2.輸出的i值為13.故選:C.11、C【解析】先求出,的坐標,再求中點坐標,利用點滿足,可得,從而求雙曲線的離心率.【詳解】解:由雙曲線方程可知,漸近線為,分別于聯(lián)立,解得:,,所以中點坐標為,因為點滿足,所以,所以,即,所以.故選:C.【點睛】本題考查雙曲線的離心率,考查直線與雙曲線的位置關系,考查學生的計算能力,屬于中檔題.12、C【解析】作出圖形,進而根據勾股定理并結合圓與圓的位置關系即可求得答案.【詳解】如示意圖,由題意,,則,又,,所以,所以.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求出直線的方程,聯(lián)立方程,求得B點的坐標,從而可得出答案.【詳解】解:由題意知,,,直線的方程為,聯(lián)立方程組,解得,或,即,所以.故答案為:.14、2【解析】求得雙曲線的一條漸近線方程,求得圓心和半徑,運用點到直線的距離公式和弦長公式,可得a,b的關系,即可得到的值【詳解】一漸近線x+ay=0,被圓(x-2)2+y2=4所截弦長為2,所以圓心到直線距為,即,a=1.所以雙曲線的實軸長為2.故答案為:15、.【解析】取BE的中點G,然后證明是二面角的平面角,進而證明,最后通過勾股定理求得答案.【詳解】如圖,取BE的中點G,連接AG,CG,由題意,則是二面角的平面角,則,又,則是正三角形,于是.根據可得:平面ABE,而平面ABE,所以,而,則平面BCFE,又平面BCFE,于是,,又,所以.故答案為:.16、##3.6【解析】先計算平均數,再計算方差.【詳解】該組數據的平均數為,方差為故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)若選①,則根據等差數列的前n項和公式,結合,求得公差,可得答案;若選②,則根據,,成等比數列,列出方程,結合,求得公差,可得答案;若選③,則根據,列出方程,結合,求得公差,可得答案;(2)由(1)可得的表達式,利用錯位相減法,求得答案.【小問1詳解】設數列的公差為d選擇①,由題意得,又,則,所以;選擇②,由,,成等比數列,得,即,解得,或(舍去),所以;選擇③,由,得,解得,所以【小問2詳解】由題意知,∴①②①-②得∴,即.18、(1)(2)【解析】(1)求出函數的導函數,再解導函數的不等式,即可求出函數的單調遞減區(qū)間;(2)依題意可得當時,當時,顯然成立,當時只需,參變分離得到,令,,利用導數說明函數的單調性,即可求出參數的取值范圍;【小問1詳解】解:當時定義域為,所以,令,解得或,令,解得,所以的單調遞減區(qū)間為;【小問2詳解】解:由,即,即,當時顯然成立,當時,只需,即,令,,則,所以在上單調遞減,所以,所以,故實數的取值范圍為.19、(1)(2);或【解析】(1)由題意得到數列為公差為的等差數列,結合,,成等比數列,列出方程求得,即可得到數列的通項公式;(2)由,得到時,,當時,,當時,,結合等差數列的求和公式,即可求解.【小問1詳解】解:由題意,數列滿足,所以數列為公差為的等差數列,又由,,成等比數列,可得,即,解得,所以數列的通項公式.【小問2詳解】解:由數列的通項公式,令,即,解得,所以當時,;當時,;當時,,所以當或時,取得最小值,最小值為.20、(1)(2)【解析】(1)由等比數列的前項和公式,等比數列的基本量運算列方程組解得和公比后可得通項公式;(2)用錯位相減法求得和【小問1詳解】設數列的公比為q,由,,得,解之得所以;【小問2詳解】,又,得,,兩式作差,得,所以21、(1)證明見解析;(2)【解析】(1)取BC的中點O,連結AO、,在三角形中分別證明和,再利用勾股定理證明,結合線面垂直的判定定理可證明平面,再由面面垂直的判定定理即可證明結果.(2)建立空間直角坐標系,假設點M存在,設,求出M點坐標,然后求出平面的法向量,利用空間向量的方法根據二面角的平面角為可求出的值.【詳解】(1)取BC的中點O,連結AO,,,為等腰直角三角形,所以,;側面為菱形,,所以三角形為為等邊三角形,所以,又,所以,又,滿足,所以;因為,所以平面,因為平面中,所以平面平面.(2)由(1)問知:兩兩垂直,以O為坐標原點,為軸,為軸,為軸建立空間之間坐標系.則,,,,若存在點M,則點M在上,不妨設,則有,則,有,,設平面的法向量為,則解得:平面的法向量為則解得:或(舍)故存在點M,.【點睛】本題考查立體幾何探索是否存在的問題,屬于中檔題.方法點睛:(1)判斷是否存在的問題,一般先假設存在;(2)設出點坐標,作為已知條件,代入計算;(3)根據結果,判斷是否存在.22、(1)y=1;(2)x+y-2=0;(3).【解析】(1)將圓的一般方程化為圓的標準方程,結合圖形即可求出結果;(2)根據題意可知直線過圓心,利用直線的兩點式方程計算即可得出結果;(3)設圓E的圓心E(a,1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年紋繡工藝(眉形修復技巧)試題及答案
- 2025年大學大二(輪機工程)船舶動力裝置原理綜合測試試題及答案
- 2025年中職計算機軟件基礎(軟件基礎知識)試題及答案
- 2025年中職(建筑裝飾技術)建筑裝飾工程施工組織設計試題及答案
- 2025年高職電子技術(電子技術實訓)試題及答案
- 2026年職業(yè)道德綜合測試(職業(yè)道德規(guī)范)試題及答案
- 2025年中職(物流服務與管理)客戶服務實務試題及答案
- 2025年大學第三學年(民航安全科學與工程)安全評估階段測試題及答案
- 2025年中職(電梯安裝與維修保養(yǎng))電梯安裝技術階段測試試題及答案
- 2025年中職第二學年(眼視光與配鏡)驗光技術基礎試題及答案
- 2026年1月福建廈門市集美區(qū)后溪鎮(zhèn)衛(wèi)生院補充編外人員招聘16人筆試模擬試題及答案解析
- 2026年長治職業(yè)技術學院單招職業(yè)技能考試題庫附答案解析
- 2026年丹東市人力資源和社會保障局公開選聘法律顧問備考題庫及完整答案詳解一套
- 2026年干部綜合能力高頻知識點測試題附解析
- GB/T 46544-2025航空航天用螺栓連接橫向振動防松試驗方法
- 炎德·英才大聯(lián)考長沙市一中2026屆高三月考(五)歷史試卷(含答案詳解)
- 零售行業(yè)采購經理商品采購與庫存管理績效考核表
- 2025年語文合格考試題庫及答案
- (新教材)2025年秋期部編人教版二年級上冊語文第七單元復習課件
- 中醫(yī)舌、脈象的辨識與臨床應用課件
評論
0/150
提交評論