山東、湖北部分重點中學2026屆高二數(shù)學第一學期期末學業(yè)水平測試模擬試題含解析_第1頁
山東、湖北部分重點中學2026屆高二數(shù)學第一學期期末學業(yè)水平測試模擬試題含解析_第2頁
山東、湖北部分重點中學2026屆高二數(shù)學第一學期期末學業(yè)水平測試模擬試題含解析_第3頁
山東、湖北部分重點中學2026屆高二數(shù)學第一學期期末學業(yè)水平測試模擬試題含解析_第4頁
山東、湖北部分重點中學2026屆高二數(shù)學第一學期期末學業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東、湖北部分重點中學2026屆高二數(shù)學第一學期期末學業(yè)水平測試模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知銳角的內角A,B,C的對邊分別為a,b,c,若向量,,,則的最小值為()A. B.C. D.2.已知拋物線上一點M與焦點間的距離是3,則點M的縱坐標為()A.1 B.2C.3 D.43.已知實數(shù)、滿足,則的最大值為()A. B.C. D.4.已知直線,兩個不同的平面,,則下列命題正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則5.曲線與曲線的A.長軸長相等 B.短軸長相等C.離心率相等 D.焦距相等6.中國農(nóng)歷的二十四節(jié)氣是中華民族的智慧與傳統(tǒng)文化的結晶,二十四節(jié)氣歌是以春、夏、秋、冬開始的四句詩.在國際氣象界,二十四節(jié)氣被譽為“中國的第五大發(fā)明”.2016年11月30日,二十四節(jié)氣被正式列入聯(lián)合國教科文組織人類非物質文化遺產(chǎn)代表作名錄.某小學三年級共有學生600名,隨機抽查100名學生并提問二十四節(jié)氣歌,只能說出一句的有45人,能說出兩句及以上的有38人,據(jù)此估計該校三年級的600名學生中,對二十四節(jié)氣歌一句也說不出的有()A.17人 B.83人C.102人 D.115人7.已知雙曲線的一個焦點到它的一條漸近線的距離為,則()A.5 B.25C. D.8.如圖所示,過拋物線的焦點F的直線依次交拋物線及準線于點A,B,C.若,且,則拋物線的方程為()A. B.C. D.9.執(zhí)行如圖所示的程序框圖,若輸出的的值為,則判斷框中應填入()A.? B.?C.? D.?10.函數(shù)圖象的一個對稱中心為()A. B.C. D.11.“圓”是中國文化的一個重要精神元素,在中式建筑中有著廣泛的運用,最具代表性的便是園林中的門洞.如圖,某園林中的圓弧形挪動高為2.5m,底面寬為1m,則該門洞的半徑為()A.1.2m B.1.3mC.1.4m D.1.5m12.在等差數(shù)列中,若,且前n項和有最大值,則使得的最大值n為()A.15 B.16C.17. D.18二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的兩個焦點分別為,,為雙曲線上一點,且,則的值為________14.已知,,且與的夾角為鈍角,則x的取值范圍是___.15.若點到點的距離比它到定直線的距離小1,則點滿足的方程為_____________16.若點P為雙曲線上任意一點,則P滿足性質:點P到右焦點的距離與它到直線的距離之比為離心率e,若C的右支上存在點Q,使得Q到左焦點的距離等于它到直線的距離的6倍,則雙曲線的離心率的取值范圍是______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知圓內有一點,過點P作直線l交圓C于A,B兩點.(1)當P為弦的中點時,求直線l的方程;(2)若直線l與直線平行,求弦的長.18.(12分)一款小游戲的規(guī)則如下:每盤游戲都需拋擲骰子三次,出現(xiàn)一次或兩次“6點”獲得15分,出現(xiàn)三次“6點”獲得120分,沒有出現(xiàn)“6點”則扣除12分(即獲得-12分)(Ⅰ)設每盤游戲中出現(xiàn)“6點”的次數(shù)為X,求X的分布列;(Ⅱ)玩兩盤游戲,求兩盤中至少有一盤獲得15分概率;(Ⅲ)玩過這款游戲的許多人發(fā)現(xiàn),若干盤游戲后,與最初的分數(shù)相比,分數(shù)沒有增加反而減少了.請運用概率統(tǒng)計的相關知識分析解釋上述現(xiàn)象19.(12分)如圖,在四棱錐中,平面底面ABCD,,,,,(1)證明:是直角三角形;(2)求平面PCD與平面PAB的夾角的余弦值20.(12分)已知函數(shù)(1)當時,求的單調性;(2)若存在兩個極值點,試證明:21.(12分)已知橢圓的上頂點在直線上,點在橢圓上.(1)求橢圓C的方程;(2)點P,Q在橢圓C上,且,,點G為垂足,是否存在定圓恒經(jīng)過A,G兩點,若存在,求出圓的方程;若不存在,請說明理由.22.(10分)已知橢圓上的點到焦點的最大距離為3,離心率為.(1)求橢圓的標準方程;(2)設直線與橢圓交于不同兩點,與軸交于點,且滿足,若,求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由,得到,根據(jù)正弦、余弦定理定理化簡得到,化簡得到,再結合基本不等式,即可求解.【詳解】由題意,向量,,因為,所以,可得,由正弦定理得,整理得,又由余弦定理,可得,因為,所以,由,所以,因為是銳角三角形,且,可得,解得,所以,所以,當且僅當,即時等號成立,故的最小值為.故選:C2、B【解析】利用拋物線的定義求解即可【詳解】拋物線的焦點為,準線方程為,因為拋物線上一點M與焦點間的距離是3,所以,得,即點M的縱坐標為2,故選:B3、A【解析】作出可行域,利用代數(shù)式的幾何意義,利用數(shù)形結合可求得的最大值.【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立可得,即點,代數(shù)式的幾何意義是連接可行域內一點與定點連線的斜率,由圖可知,當點在可行域內運動時,直線的傾斜角為銳角,當點與點重合時,直線的傾斜角最大,此時取最大值,即.故選:A.4、C【解析】對于A,可能在內,故可判斷A;對于B,可能相交,故可判斷B;對于C,根據(jù)線面垂直的判定定理,可判定C;對于D,和可能平行,或斜交或在內,故可判斷D.【詳解】對于A,除了外,還有可能在內,故可判斷A錯誤;對于B,,那么可能相交,故可判斷B錯誤;對于C,根據(jù)線面平行的性質定理可知,在內一定存在和平行的直線,那么該直線也垂直于,所以,故判定C正確;對于D,,,則和可能平行,或斜交或在內,故可判D.錯誤,故選:C.5、D【解析】分別求出兩橢圓的長軸長、短軸長、離心率、焦距,即可判斷【詳解】解:曲線表示焦點在軸上,長軸長10,短軸長為6,離心率為,焦距為8曲線表示焦點在軸上,長軸長為,短軸長為,離心率為,焦距為8對照選項,則正確故選:【點睛】本題考查橢圓的方程和性質,考查運算能力,屬于基礎題6、C【解析】根據(jù)頻率計算出正確答案.【詳解】一句也說不出的學生頻率為,所以估計名學生中,一句也說不出的有人.故選:C7、B【解析】由漸近線方程得到,焦點坐標為,漸近線方程為:,利用點到直線距離公式即得解【詳解】由題意,雙曲線故焦點坐標為,漸近線方程為:焦點到它的一條漸近線的距離為:解得:故選:B8、A【解析】分別過點作準線的垂線,分別交準線于點,,設,推出;根據(jù),進而推導出,結合拋物線定義求出;最后由相似比推導出,即可求出拋物線的方程.【詳解】如圖分別過點作準線的垂線,分別交準線于點,,設與交于點.設,,,由拋物線定義得:,故在直角三角形中,,,,,,,∥,,,即,,所以拋物線的方程為.故選:A9、C【解析】本題為計算前項和,模擬程序,實際計算求和即可得到的值.【詳解】由題意可知:輸出的的值為數(shù)列的前項和.易知,則,令,解得.即前7項的和.為故判斷框中應填入“?”.故選:C.10、D【解析】要求函數(shù)圖象的一個對稱中心的坐標,關鍵是求函數(shù)時的的值;令,根據(jù)余弦函數(shù)圖象性質可得,此時可求出,然后對進行取值,進而結合選項即可得到答案.【詳解】解:令,則解得,即,圖象的對稱中心為,令,即可得到圖象的一個對稱中心為故選:D【點睛】本題考查三角函數(shù)的對稱中心,正弦函數(shù)的對稱中心為,余弦函數(shù)的對稱中心為.11、B【解析】設半徑為R,根據(jù)垂徑定理可以列方程求解即可.【詳解】設半徑為R,,解得,化簡得.故選:B.12、A【解析】由題可得,則,可判斷,,即可得出結果.【詳解】前n項和有最大值,,,,,,,使得的最大值n為15.故選:A.【點睛】本題考查等差數(shù)列前n項和的有關判斷,解題的關鍵是得出.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】求得雙曲線的a,b,c,不妨設P為雙曲線右支上的點,|PF1|=m,|PF2|=n,利用雙曲線的定義、余弦定理列出方程組,求出mn即可.【詳解】雙曲線的a=2,b=1,c=,不妨設P為雙曲線右支上的點,|PF1|=m,|PF2|=n,則,①由余弦定理可得,②聯(lián)立①②可得故答案為:214、∪【解析】根據(jù)題意得出且與不共線,然后根據(jù)向量數(shù)量積的定義及向量共線的條件求出x的取值范圍.【詳解】∵與的夾角為鈍角,且與不共線,即,且,解得,且,∴x的取值范圍是∪.故答案為:∪.15、【解析】根據(jù)拋物線的定義可得動點的軌跡方程【詳解】點到點的距離比它到直線的距離少1,所以點到點的距離與到直線的距離相等,所以其軌跡為拋物線,焦點為,準線為,所以方程為,故答案為:16、【解析】若Q到的距離為有,由題設有,結合雙曲線離心率的性質,即可求離心率的范圍.【詳解】由題意,,即,整理有,所以或,若Q到的距離為,則Q到左、右焦點的距離分別為、,又Q在C的右支上,所以,則,又,綜上,雙曲線的離心率的取值范圍是.故答案為:【點睛】關鍵點點睛:若Q到的距離為,根據(jù)給定性質有Q到左、右焦點的距離分別為、,再由雙曲線性質及已知條件列不等式組求離心率范圍.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由題意,,求出直線l的斜率,利用點斜式即可求解;(2)由題意,利用點斜式求出直線l的方程,然后由點到直線的距離公式求出弦心距,最后根據(jù)弦長公式即可求解.小問1詳解】解:由題意,圓心,P為弦的中點時,由圓的性質有,又,所以,所以直線l的方程為,即;【小問2詳解】解:因為直線l與直線平行,所以,所以直線的方程為,即,因為圓心到直線的距離,又半徑,所以由弦長公式得.18、(Ⅰ)分布列見解析(Ⅱ)(Ⅲ)見解析【解析】(Ⅰ)先得到可能的取值為,,,,根據(jù)每次拋擲骰子,出現(xiàn)“6點”的概率為,得到每種取值的概率,得到分布列;(Ⅱ)計算出每盤游戲沒有獲得15分的概率,從而得到兩盤中至少有一盤獲得15分的概率;(Ⅲ)設每盤游戲得分為,得到的分布列和數(shù)學期望,從而得到結論.【詳解】解:(Ⅰ)可能的取值為,,,.每次拋擲骰子,出現(xiàn)“6點”的概率為.,,,,所以X的分布列為:0123(Ⅱ)設每盤游戲沒有得到15分為事件,則.設“兩盤游戲中至少有一次獲得15分”為事件,則因此,玩兩盤游戲至少有一次獲得15分的概率為.(Ⅲ)設每盤游戲得分為.由(Ⅰ)知,的分布列為:Y-1215120P的數(shù)學期望為.這表明,獲得分數(shù)的期望為負因此,多次游戲之后分數(shù)減少的可能性更大【點睛】本題考查求隨機變量的分布列和數(shù)學期望,求互斥事件的概率,屬于中檔題.19、(1)證明見解析(2)【解析】(1)連接BD,在四邊形ABCD中求得,在中,取得,得到,由線面垂直的性質證得平面,得到,再由線面垂直的判定定理,證得平面PBD,進而得到,即可證得是直角三角形(2)以為原點,以所在直線為x軸,過點且與平行直線為y軸,所在直線為z軸,建立的空間直角坐標系,分別求得平面和平面的法向量,利用向量的夾角公式,即可求解.【小問1詳解】證明:如圖所示,連接BD,因為四邊形中,可得,,,所以,,則在中,由余弦定理可得,所以,所以因為平面底面,平面底面,底面ABCD,所以平面PAB,因為平面PAB,所以,因為,,所以平面PBD因為平面PBD,所以,即是直角三角形【小問2詳解】解:由(1)知平面PAB,取AB的中點O,連接PO,因為,所以,因為平面,平面底面,平面底面,所以底面,以為原點,以所在直線為x軸,過點且與平行的直線為y軸,所在直線為z軸,建立如圖所示的空間直角坐標系,設,則,,,,,可得,,,設平面的一個法向量為,則,令,可得,,所以,因為是平面的一個法向量,所以,即平面與平面的夾角的余弦值為20、(1)答案見解析(2)證明見解析【解析】(1)依據(jù)導函數(shù)判定函數(shù)的單調性即可;(2)等價轉化和構造新函數(shù)在不等式證明中可以起到關鍵性作用.【小問1詳解】的定義域為,當時,令得,當時,;當時,所以在和上單調遞減,在上單調遞增.【小問2詳解】,存在兩個極值點,則有二正根,由,得由于的兩個極值點滿足,所以,不妨設,則由于,所以等價于設函數(shù),在單調遞減,又,從而所以,故.【點睛】導函數(shù)中常用的兩種常用的轉化方法:一是利用導數(shù)研究含參函數(shù)的單調性,?;癁椴坏仁胶愠闪栴}.注意分類討論與數(shù)形結合思想的應用;二是函數(shù)的零點、不等式證明常轉化為函數(shù)的單調性、極(最)值問題處理21、(1);(2)存在,定圓.【解析】(1)由題可得,,即求;(2)由題可設直線的方程,利用韋達定理及條件可得直線恒過定點,則以為直徑的圓適合題意,即得.【小問1詳解】由題設知,橢圓上頂點為,且在直線上∴,即又點在橢圓上,∴解得,∴橢圓C的方程為;【小問2詳解】設,,當直線斜率存在,設直線為:聯(lián)立方程,化簡得∴,,∵,∴又∵,∴將,代入,化簡得,即則或,①當時,直線恒過定點與點重合,不符題意.②當時,直線恒過定點,記為點,∵,∴以為直徑,其中點為圓心的圓恒經(jīng)過兩點,則圓方程為:;當直線斜率不存在,設方程為,,,且,,∴,解得或(舍去),,取,以為直徑作圓,圓方程為:恒經(jīng)過兩點,綜上所述,存在定圓恒經(jīng)過兩點.【點睛】關鍵點點睛:本題第二問的關鍵是證明直線恒過定點,結合條件可得以為直徑的圓,適合題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論