版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
西藏林芝地區(qū)二高2026屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若方程表示圓,則實(shí)數(shù)m的取值范圍為()A B.C. D.2.內(nèi)角、、的對邊分別為、、,若,,,則()A. B.C. D.3.已知等差數(shù)列的前n項(xiàng)和為Sn,首項(xiàng)a1=1,若,則公差d的取值范圍為()A. B.C. D.4.已知數(shù)列是各項(xiàng)均為正數(shù)的等比數(shù)列,若,則公比()A. B.2C.2或 D.45.在等差數(shù)列中,,且構(gòu)成等比數(shù)列,則公差等于()A.0 B.3C. D.0或36.如圖所示,正方形邊長為2cm,它是水平放置的一個(gè)平面圖形的直觀圖,則原圖形的周長是()A.16cm B.cmC.8cm D.cm7.中國剪紙是一種用剪刀或刻刀在紙上剪刻花紋,用于裝點(diǎn)生活或配合其他民俗活動(dòng)的民間藝術(shù).如圖所示的圓形剪紙中,正六邊形的所有頂點(diǎn)都在該圓上,若在該圓形剪紙的內(nèi)部投擲一點(diǎn),則該點(diǎn)恰好落在正六邊形內(nèi)部的概率為()A. B.C. D.8.已知函數(shù),,若對于任意的,存在唯一的,使得,則實(shí)數(shù)a的取值范圍是()A(e,4) B.(e,4]C.(e,4) D.(,4]9.在矩形中,,在該矩形內(nèi)任取一點(diǎn)M,則事件“”發(fā)生的概率為()A. B.C. D.10.在的展開式中,的系數(shù)為()A. B.5C. D.1011.命題的否定是()A. B.C. D.12.已知、為非零實(shí)數(shù),若且,則下列不等式成立的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)為三角形的一個(gè)內(nèi)角,已知曲線:,則可能是___________.(寫出不同曲線的名稱,盡可能多.注:在一些問題情景中,直線可以理解成是特殊的曲線)14.若不等式的解集為,則________15.一條直線過點(diǎn),且與拋物線交于,兩點(diǎn).若,則弦中點(diǎn)到直線的距離等于__________16.已知,若三個(gè)數(shù)成等差數(shù)列,則_________;若三個(gè)數(shù)成等比數(shù)列,則__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某市對新形勢下的中考改革工作進(jìn)行了全面的部署安排.中考錄取科目設(shè)置分為固定賦分科目和非固定賦分科目,固定賦分科目(語文、數(shù)學(xué)、英語、物理、體育與健康)按卷面分計(jì)算;非固定賦分科目(化學(xué)、生物、道德與法治、歷史、地理)按學(xué)生在該學(xué)科中的排名進(jìn)行等級賦分,即根據(jù)改革方案,將每門等級考試科目中考生的原始成績從高到低分為A,,,,,,,共個(gè)等級.參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為,,,,,,,.等級考試科目成績計(jì)入考生總成績時(shí),將A至等級內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到,,,,,,,八個(gè)分?jǐn)?shù)區(qū)間,得到考生的等級成績.該市學(xué)生的中考化學(xué)原始成績制成頻率分布直方圖如圖所示:(1)求圖中的值;(2)估計(jì)該市學(xué)生中考化學(xué)原始成績不少于多少分才能達(dá)到等級及以上(含等級)?(3)由于中考改革后學(xué)生各科原始成績不再返回學(xué)校,只告知各校參考學(xué)生的各科平均成績及方差.已知某校初三共有名學(xué)生參加中考,為了估計(jì)該校學(xué)生的化學(xué)原始成績達(dá)到等級及以上(含等級)的人數(shù),將該校學(xué)生的化學(xué)原始成績看作服從正態(tài)分布,并用這名學(xué)生的化學(xué)平均成績作為的估計(jì)值,用這名學(xué)生化學(xué)成績的方差作為的估計(jì)值,計(jì)算人數(shù)(結(jié)果保留整數(shù))附:,,.18.(12分)已知圓經(jīng)過點(diǎn)和,且圓心在直線上.(1)求圓的方程;(2)過原點(diǎn)的直線與圓交于M,N兩點(diǎn),若的面積為,求直線的方程.19.(12分)某雙曲線型自然冷卻通風(fēng)塔的外形是由圖1中的雙曲線的一部分繞其虛軸所在的直線旋轉(zhuǎn)一周所形成的曲面,如圖2所示.雙曲線的左、右頂點(diǎn)分別為、.已知該冷卻通風(fēng)塔的最窄處是圓O,其半徑為1;上口為圓,其半徑為;下口為圓,其半徑為;高(即圓與所在平面間的距離)為.(1)求此雙曲線的方程;(2)以原平面直角坐標(biāo)系的基礎(chǔ)上,保持原點(diǎn)和x軸、y軸不變,建立空間直角坐標(biāo)系,如圖3所示.在上口圓上任取一點(diǎn),在下口圓上任取一點(diǎn).請給出、的值,并求出與的值;(3)在(2)的條件下,是否存在點(diǎn)P、Q,使得P、A、Q三點(diǎn)共線.若不存在,請說明理由;若存在,求出點(diǎn)P、Q的坐標(biāo),并證明此時(shí)線段PQ上任意一點(diǎn)都在曲面上.20.(12分)如圖,在四棱錐P-ABCD中,底面ABCD是一個(gè)直角梯形,其中∠BAD=90°,AB∥DC,PA⊥底面ABCD,AB=AD=PA=2,DC=1,點(diǎn)M和點(diǎn)N分別為PA和PC的中點(diǎn)(1)證明:直線DM∥平面PBC;(2)求直線BM和平面BDN所成角的余弦值;(3)求二面角M-BD-N正弦值;(4)求點(diǎn)P到平面DBN距離;(5)設(shè)點(diǎn)N在平面BDM內(nèi)的射影為點(diǎn)H,求線段HA的長21.(12分)如圖,在四棱柱中,平面,底面ABCD滿足∥BC,且(Ⅰ)求證:平面;(Ⅱ)求直線與平面所成角的正弦值.22.(10分)如圖,在四棱錐中,底面四邊形為角梯形,,,,O為的中點(diǎn),,.(1)證明:平面;(2)若,求平面與平面所成夾角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù),解不等式即可求解.【詳解】由方程表示圓,則,解得.所以實(shí)數(shù)m的取值范圍為.故選:D2、C【解析】利用正弦定理可求得邊的長.【詳解】由正弦定理得.故選:C.3、A【解析】該等差數(shù)列有最大值,可分析得,據(jù)此可求解.【詳解】,故,故有故d取值范圍為.故選:A4、B【解析】由兩式相除即可求公比.【詳解】設(shè)等比數(shù)列的公比為q,∵其各項(xiàng)均為正數(shù),故q>0,∵,∴,又∵,∴=4,則q=2.故選:B.5、D【解析】根據(jù),且構(gòu)成等比數(shù)列,利用“”求解.【詳解】設(shè)等差數(shù)列的公差為d,因?yàn)?,且?gòu)成等比數(shù)列,所以,解得,故選:D6、A【解析】由直觀圖確定原圖形中平行四邊形中線段的長度與關(guān)系,然后計(jì)算可得【詳解】由斜二測畫法,原圖形是平行四邊形,,又,,,所以,周長為故選:A7、D【解析】設(shè)圓的半徑,求出圓的面積與正六邊形的面積,再根據(jù)幾何概型的概率公式計(jì)算可得;【詳解】解:設(shè)圓的半徑,則,則,所以,所以在該圓形剪紙的內(nèi)部投擲一點(diǎn),則該點(diǎn)恰好落在正六邊形內(nèi)部的概率;故選:D8、B【解析】結(jié)合導(dǎo)數(shù)和二次函數(shù)的性質(zhì)可求出和的值域,結(jié)合已知條件可得,,從而可求出實(shí)數(shù)a的取值范圍.【詳解】解:g(x)=x2ex的導(dǎo)函數(shù)為g′(x)=2xex+x2ex=x(x+2)ex,當(dāng)時(shí),,由時(shí),,時(shí),,可得g(x)在[–1,0]上單調(diào)遞減,在(0,1]上單調(diào)遞增,故g(x)在[–1,1]上的最小值為g(0)=0,最大值為g(1)=e,所以對于任意的,.因?yàn)殚_口向下,對稱軸為軸,又,所以當(dāng)時(shí),,當(dāng)時(shí),,則函數(shù)在[,2]上的值域?yàn)閇a–4,a],且函數(shù)f(x)在,圖象關(guān)于軸對稱,在(,2]上,函數(shù)單調(diào)遞減.由題意,得,,可得a–4≤0<e<,解得ea≤4故選:B【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)求函數(shù)的最值,考查了二次函數(shù)的性質(zhì),屬于中檔題.本題的難點(diǎn)是這一條件的轉(zhuǎn)化.9、D【解析】利用幾何概型的概率公式,轉(zhuǎn)化為面積比直接求解.【詳解】以AB為直徑作圓,當(dāng)點(diǎn)M在圓外時(shí),.所以事件“”發(fā)生的概率為.故選:D10、C【解析】首先寫出展開式的通項(xiàng)公式,然后結(jié)合通項(xiàng)公式確定的系數(shù)即可.【詳解】展開式的通項(xiàng)公式為:,令可得:,則的系數(shù)為:.故選:C.【點(diǎn)睛】二項(xiàng)式定理的核心是通項(xiàng)公式,求解此類問題可以分兩步完成:第一步根據(jù)所給出的條件(特定項(xiàng))和通項(xiàng)公式,建立方程來確定指數(shù)(求解時(shí)要注意二項(xiàng)式系數(shù)中n和r的隱含條件,即n,r均為非負(fù)整數(shù),且n≥r,如常數(shù)項(xiàng)指數(shù)為零、有理項(xiàng)指數(shù)為整數(shù)等);第二步是根據(jù)所求的指數(shù),再求所求解的項(xiàng)11、C【解析】根據(jù)含全稱量詞命題的否定可寫出結(jié)果.【詳解】全稱命題的否定是特稱命題,所以命題的否定是.故選:C12、D【解析】作差法即可逐項(xiàng)判斷.【詳解】或,對于A:,∵,無法判斷正負(fù),故A錯(cuò)誤;對于B:,∵無法判斷正負(fù),故B錯(cuò)誤;對于C:,∵,,∴,,故C錯(cuò)誤;對于D:,∴,故D正確.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、焦點(diǎn)在軸上的橢圓,焦點(diǎn)在軸上的雙曲線,兩條直線.【解析】討論,和三種情況,進(jìn)而根據(jù)曲線方程的特征得到答案.【詳解】若,則曲線:,而,曲線表示焦點(diǎn)在y軸上的橢圓;若,則曲線:或,曲線表示兩條直線;若,則曲線:,而,曲線表示焦點(diǎn)在x軸上的雙曲線.故答案為:焦點(diǎn)在y軸上橢圓,焦點(diǎn)在x軸上的雙曲線,兩條直線.14、11【解析】根據(jù)題意得到2與3是方程的兩個(gè)根,再根據(jù)兩根之和與兩根之積求出,進(jìn)而求出答案.【詳解】由題意得:2與3是方程的兩個(gè)根,則,,所以.故答案為:1115、【解析】求出弦的中點(diǎn)到拋物線準(zhǔn)線的距離,進(jìn)一步得到弦的中點(diǎn)到直線的距離【詳解】解:如圖,拋物線的焦點(diǎn)為,,弦的中點(diǎn)到準(zhǔn)線的距離為,則弦的中點(diǎn)到直線的距離等于故答案為:16、①.4②.【解析】由等差中項(xiàng)與等比中項(xiàng)計(jì)算即可.【詳解】若a,b,c三個(gè)數(shù)成等差數(shù)列.所以.若a,b,c三個(gè)數(shù)成等比數(shù)列.所以故答案為:4,.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)85(3)23【解析】(1)根據(jù)所有矩形面積之和等于1可得;(2)先根據(jù)矩形面積之和判斷達(dá)到等級的最低分?jǐn)?shù)為x所在區(qū)間,然后根據(jù)矩形面積之和等于0.9可得;(3)由題知,所以由可得.【小問1詳解】由得【小問2詳解】由題意可知,要使等級達(dá)到等級及以上,則成績需超過的學(xué)生.因?yàn)?,記達(dá)到等級的最低分?jǐn)?shù)為x,則,則由,解得所以該市學(xué)生中考化學(xué)原始成績不少于85分才能達(dá)到等級及以上.【小問3詳解】由題知,因?yàn)樗怨试撔W(xué)生的化學(xué)原始成績達(dá)到等級及以上的人數(shù)大約為人.18、(1)(2)直線的方程為或或【解析】(1)由弦的中垂線與直線的交點(diǎn)為圓心即可求解;(2)由,可得或,進(jìn)而有或,顯然直線斜率存在,設(shè)直線,由點(diǎn)到直線的距離公式求出的值即可得答案.【小問1詳解】解:設(shè)弦的中點(diǎn)為,則有,因?yàn)椋灾本€,所以直線的中垂線為,則圓心在直線上,且在直線上,聯(lián)立方程解得圓心,則圓的半徑為,所以圓方程為;【小問2詳解】解:設(shè)圓心到直線的距離為,因?yàn)椋曰?,所以或,顯然直線斜率存在,所以設(shè)直線,則或,解得或或,故直線的方程為或或.19、(1);(2),,,;(3)存在,或,證明見解析.【解析】(1)設(shè)雙曲線的標(biāo)準(zhǔn)方程為,易知,設(shè),,代入求解即可;(2)分析圓,圓的方程即可求解;(3)利用圓的參數(shù)方程,設(shè),,利用,即可求解,再利用線段PQ上任意一點(diǎn)的特征證明點(diǎn)在曲面上;【小問1詳解】設(shè)雙曲線的標(biāo)準(zhǔn)方程為,由題意知,點(diǎn),的橫坐標(biāo)分別為,,則設(shè)點(diǎn),的坐標(biāo)為,,,,,解得,,又塔高米,,解得,故所求的雙曲線的方程為【小問2詳解】點(diǎn)在圓上,;點(diǎn)在圓上,;圓,其半徑為,;圓,其半徑為,【小問3詳解】存在點(diǎn)P、Q,使得P、A、Q三點(diǎn)共線.由點(diǎn)在半徑為的圓上,(為參數(shù));點(diǎn)在半徑為的圓上,(為參數(shù));由已知得,整理得兩式平方求和得,則或當(dāng)時(shí),,當(dāng)時(shí),證明:,則,利用,,其中又曲面上的每一點(diǎn)可以是圓與旋轉(zhuǎn)任意坐標(biāo)系上的雙曲線的交點(diǎn),旋轉(zhuǎn)直角坐標(biāo)系,保持原點(diǎn)和y軸不變,點(diǎn)所在的軸為軸,此時(shí),滿足,即即點(diǎn)是曲面上的點(diǎn).20、(1)證明見解析(2)(3)(4)(5)【解析】(1)以為原點(diǎn),建立空間直角坐標(biāo)系,利用向量法,證明與平面的法向量垂直,從而證明直線平面(2)求出平面的法向量,利用向量法,求出直線和平面所成角的余弦值(3)求出平面的法向量和平面的法向量,利用向量法,求出二面角的正弦值(4)求出的坐標(biāo),再求出平面的法向量,利用向量法,求出點(diǎn)到平面的距離;(5)設(shè)點(diǎn)在平面內(nèi)的射影為點(diǎn),從而表示出的坐標(biāo),求出到平面的距離,列出方程組,求出點(diǎn)坐標(biāo),從而求出的長度.【小問1詳解】四棱錐,底面是一個(gè)直角梯形,,平面,所以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,,,,,,,,,設(shè)平面的法向量,所以,,取,則,所以,平面,所以直線平面.【小問2詳解】,,,設(shè)平面的法向量,則,即,取,則,設(shè)直線與平面所成的角為,則,所以,所以直線與平面所成角的余弦值為.【小問3詳解】設(shè)平面的法向量為,則,即,取,得,平面的法向量,設(shè)二面角的平面角為,則,所以,所以二面角的正弦值為.【小問4詳解】,平面的法向量,所以點(diǎn)到平面的距離為.【小問5詳解】設(shè)點(diǎn)在平面的射影為點(diǎn),則,所以點(diǎn)到平面的距離為,根據(jù),得解得,,,或者,,(舍)所以.21、(Ⅰ)證明見解析;(Ⅱ)【解析】(Ⅰ)證明,根據(jù)得到,得到證明.(Ⅱ)如圖所示,分別以為軸建立空間直角坐標(biāo)系,平面的法向量,,計(jì)算向量夾角得到答案.【詳解】(Ⅰ)平面,平面,故.,,故,故.,故平面.(Ⅱ)如圖所示:分別以為軸建立空間直角坐標(biāo)系,則,,,,.設(shè)平面的法向量,則,即,取得到,,設(shè)直線與平面所成角為故.【點(diǎn)睛】本題考查了線面垂直,線面夾角,意在考查學(xué)生的空間想象能力和
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 垃圾房管理制度與規(guī)范
- 醫(yī)美物價(jià)管理制度規(guī)范
- 門診二級庫管理制度規(guī)范
- 音樂器材室教室制度規(guī)范
- 縣中醫(yī)院工作制度規(guī)范
- 飛機(jī)雷達(dá)安裝調(diào)試工安全生產(chǎn)規(guī)范模擬考核試卷含答案
- 規(guī)范村兩委聯(lián)度會(huì)議制度
- 學(xué)校門衛(wèi)規(guī)范執(zhí)勤制度
- 監(jiān)控gps安裝制度規(guī)范
- 混凝土制品質(zhì)檢員創(chuàng)新思維競賽考核試卷含答案
- 禁毒社工知識(shí)培訓(xùn)課件
- 家具展廳管理方案(3篇)
- 半成品擺放管理辦法
- 周圍性癱瘓的護(hù)理常規(guī)
- 電能質(zhì)量技術(shù)監(jiān)督培訓(xùn)課件
- 電子制造行業(yè)數(shù)字化轉(zhuǎn)型白皮書
- 腫瘤患者雙向轉(zhuǎn)診管理職責(zé)
- 福建省漳州市2024-2025學(xué)年高一上學(xué)期期末教學(xué)質(zhì)量檢測歷史試卷(含答案)
- 定額〔2025〕2號(hào)文-關(guān)于發(fā)布2020版電網(wǎng)技術(shù)改造及檢修工程概預(yù)算定額2024年下半年價(jià)格
- 管道穿越高速橋梁施工方案
- 2024版《中醫(yī)基礎(chǔ)理論經(jīng)絡(luò)》課件完整版
評論
0/150
提交評論