湖南省醴陵市2026屆數(shù)學高二上期末調(diào)研試題含解析_第1頁
湖南省醴陵市2026屆數(shù)學高二上期末調(diào)研試題含解析_第2頁
湖南省醴陵市2026屆數(shù)學高二上期末調(diào)研試題含解析_第3頁
湖南省醴陵市2026屆數(shù)學高二上期末調(diào)研試題含解析_第4頁
湖南省醴陵市2026屆數(shù)學高二上期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

湖南省醴陵市2026屆數(shù)學高二上期末調(diào)研試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在等比數(shù)列中,若是函數(shù)的極值點,則的值是()A. B.C. D.2.若正三棱柱的所有棱長都相等,D是的中點,則直線AD與平面所成角的正弦值為A. B.C. D.3.函數(shù)在上的極大值點為()A. B.C. D.4.已知為定義在R上的偶函數(shù)函數(shù),且在單調(diào)遞減.若關(guān)于的不等式在上恒成立,則實數(shù)m的取值范圍是()A. B.C. D.5.已知雙曲線:與橢圓:有相同的焦點,且一條漸近線方程為:,則雙曲線的方程為()A. B.C. D.6.已知,分別為橢圓的左右焦點,為坐標原點,橢圓上存在一點,使得,設(shè)的面積為,若,則該橢圓的離心率為()A. B.C. D.7.點在圓上,點在直線上,則的最小值是()A. B.C. D.8.已知、是橢圓的兩個焦點,P為橢圓C上一點,且,若的面積為9,則的值為()A.1 B.2C.3 D.49.已知m是2與8的等比中項,則圓錐曲線x2﹣=1的離心率是()A.或 B.C. D.或10.已知集合,,則中元素的個數(shù)為()A.3 B.2C.1 D.011.數(shù)列滿足,,則()A. B.C. D.212.已知點,動點P滿足,則點P的軌跡為()A橢圓 B.雙曲線C.拋物線 D.圓二、填空題:本題共4小題,每小題5分,共20分。13.寫出一個同時滿足下列條件①②的圓C的一般方程______①圓心在第一象限;②圓C與圓相交的弦的方程為14.用1,2,3,4,5組成沒有重復數(shù)字的五位數(shù),其中個位小于百位且百位小于萬位的五位數(shù)有n個,則的展開式中,的系數(shù)是___________.(用數(shù)字作答)15.數(shù)列滿足前項和,則數(shù)列的通項公式為_____________16.圓關(guān)于直線的對稱圓的標準方程為_______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,,,的對邊分別是,,,已知.(1)求;(2)若,且的面積為4,求的周長18.(12分)用長度為80米的護欄圍出一個一面靠墻的矩形運動場地,如圖所示,運動場地的一條邊記為(單位:米),面積記為(單位:平方米)(1)求關(guān)于的函數(shù)關(guān)系;(2)求的最大值19.(12分)已知銳角的內(nèi)角A,B,C的對邊分別為a,b,c,且.(1)求A;(2)若,求外接圓面積的最小值.20.(12分)已知函數(shù).(1)設(shè)x=2是函數(shù)f(x)的極值點,求a,并求f(x)的單調(diào)區(qū)間;(2)證明:當時,.21.(12分)某種機械設(shè)備隨著使用年限的增加,它的使用功能逐漸減退,使用價值逐年減少,通常把它使用價值逐年減少的“量”換算成費用,稱之為“失效費”.某種機械設(shè)備的使用年限(單位:年)與失效費(單位:萬元)的統(tǒng)計數(shù)據(jù)如下表所示:使用年限(單位:年)1234567失效費(單位:萬元)2.903.303.604.404.805.205.90(1)由上表數(shù)據(jù)可知,可用線性回歸模型擬合與關(guān)系.請用相關(guān)系數(shù)加以說明;(精確到0.01)(2)求出關(guān)于的線性回歸方程,并估算該種機械設(shè)備使用8年的失效費參考公式:相關(guān)系數(shù)線性回歸方程中斜率和截距最小二乘估計計算公式:,參考數(shù)據(jù):,,22.(10分)已知橢圓)過點A(0,),且與雙曲線有相同的焦點(1)求橢圓C的方程;(2)設(shè)M,N是橢圓C上異于A的兩點,且滿足,試判斷直線MN是否過定點,并說明理由

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)導數(shù)的性質(zhì)求出函數(shù)的極值點,再根據(jù)等比數(shù)列的性質(zhì)進行求解即可.【詳解】,當時,單調(diào)遞增,當時,單調(diào)遞減,當時,單調(diào)遞增,所以是函數(shù)的極值點,因為,且所以,故選:B2、A【解析】建立空間直角坐標系,得到相關(guān)點的坐標后求出直線的方向向量和平面的法向量,借助向量的運算求出線面角的正弦值【詳解】取AC的中點為坐標原點,建立如圖所示的空間直角坐標系設(shè)三棱柱的棱長為2,則,∴設(shè)為平面的一個法向量,由故令,得設(shè)直線AD與平面所成角為,則,所以直線AD與平面所成角的正弦值為故選A【點睛】空間向量的引入為解決立體幾何問題提供了較好的方法,解題時首先要建立適當?shù)淖鴺讼?,得到相關(guān)點的坐標后借助向量的運算,將空間圖形的位置關(guān)系或數(shù)量關(guān)系轉(zhuǎn)化為向量的運算處理.在解決空間角的問題時,首先求出向量夾角的余弦值,然后再轉(zhuǎn)化為所求的空間角.解題時要注意向量的夾角和空間角之間的聯(lián)系和區(qū)別,避免出現(xiàn)錯誤3、C【解析】求出函數(shù)的導數(shù),利用導數(shù)確定函數(shù)的單調(diào)性,即可求出函數(shù)的極大值點【詳解】,∴當時,,單調(diào)遞減,當時,,單調(diào)遞增,當時,,單調(diào)遞減,∴函數(shù)在的極大值點為故選:C4、C【解析】由條件利用函數(shù)的奇偶性和單調(diào)性,可得對恒成立,轉(zhuǎn)化為且對恒成立.求得相應的最大值和最小值,從而求得的范圍【詳解】定義在上的函數(shù)為偶函數(shù),且在上遞減,在上單調(diào)遞增,若不等式在上恒成立,即在上恒成立在上恒成立,即在上恒成立,即且在上恒成立令,則,,,,在上遞增,上遞減,令,當時,,在上遞減,故可知,解得,所以實數(shù)m的取值范圍是故選:C5、B【解析】由漸近線方程,設(shè)出雙曲線方程,結(jié)合與橢圓有相同的焦點,求出雙曲線方程.【詳解】∵雙曲線:的一條漸近線方程為:∴設(shè)雙曲線:∵雙曲線與橢圓有相同的焦點∴,解得:∴雙曲線的方程為.故選:B.6、D【解析】由可得直角三角形,故,且,結(jié)合,聯(lián)立可得,即得解【詳解】由題意,故為直角三角形,,又,,又為直角三角形,故,,即,.故選:D.7、B【解析】根據(jù)題意可知圓心,又由于線外一點到已知直線的垂線段最短,結(jié)合點到直線的距離公式,即可求出結(jié)果.【詳解】由題意可知,圓心,所以圓心到的距離為,所以的最小值為.故選:B.8、C【解析】根據(jù)橢圓定義,和條件列式,再通過變形計算求解.【詳解】由條件可知,,即,解得:.故選:C【點睛】本題考查橢圓的定義,焦點三角形的性質(zhì),重點考查轉(zhuǎn)化與變形,計算能力,屬于基礎(chǔ)題型.9、A【解析】利用等比數(shù)列求出m,然后求解圓錐曲線的離心率即可【詳解】解:m是2與8的等比中項,可得m=±4,當m=4時,圓錐曲線為雙曲線x2﹣=1,它的離心率為:,當m=-4時,圓錐曲線x2﹣=1為橢圓,離心率:,故選:A10、B【解析】集合中的元素為點集,由題意,可知集合A表示以為圓心,為半徑的單位圓上所有點組成的集合,集合B表示直線上所有的點組成的集合,又圓與直線相交于兩點,,則中有2個元素.故選B.【名師點睛】求集合的基本運算時,要認清集合元素的屬性(是點集、數(shù)集或其他情形)和化簡集合,這是正確求解集合運算的兩個先決條件.集合中元素的三個特性中的互異性對解題影響較大,特別是含有字母的集合,在求出字母的值后,要注意檢驗集合中的元素是否滿足互異性.11、C【解析】根據(jù)已知分析數(shù)列周期性,可得答案【詳解】解:∵數(shù)列滿足,,∴,,,,故數(shù)列以4為周期呈現(xiàn)周期性變化,由,故,故選C【點睛】本題考查的知識點是數(shù)列的遞推公式,數(shù)列的周期性,難度中檔12、A【解析】根據(jù)橢圓的定義即可求解.【詳解】解:,故,又,根據(jù)橢圓的定義可知:P的軌跡為橢圓.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、(答案不唯一)【解析】設(shè)所求圓為,由圓心在第一象限可判斷出,只需取特殊值,即可得到答案.【詳解】可設(shè)所求圓為,即只需,解得:,不妨取,則圓的方程為:.故答案為:(答案不唯一)14、2022【解析】根據(jù)排列和組合計數(shù)公式求出,然后利用二項式定理進行求解即可【詳解】解:用1,2,3,4,5組成沒有重復數(shù)字的五位數(shù)中,滿足個位小于百位且百位小于萬位的五位數(shù)有個,即,當時,,則系數(shù)是,故答案為:202215、【解析】由已知中前項和,結(jié)合,分別討論時與時的通項公式,并由時,的值不滿足時的通項公式,故要將數(shù)列的通項公式寫成分段函數(shù)的形式【詳解】∵數(shù)列前項和,∴當時,,又∵當時,,故,故答案為.【點睛】本題考查的知識點是等差數(shù)列的通項公式,其中正確理解由數(shù)列的前n項和Sn,求通項公式的方法和步驟是解答本題的關(guān)鍵16、【解析】先將已知圓的方程化為標準形式,求得圓心坐標(2,2)和半徑2,然后可根據(jù)直線的位置直接看出(2,2)點的對稱點,進而寫出方程.【詳解】圓的標準方程為,圓心(2,2),半徑為2,圓心(2,2)關(guān)于直線的對稱點為原點,所以所求對稱圓標準方程為,故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)正弦定理及題中條件,可得,化簡整理,即可求解(2)由的面積為4,結(jié)合(1)中結(jié)論,可得,結(jié)合余弦定理,可得,從而可求的周長【詳解】解:(1)由及正弦定理得,,又,∴,∴,∴.(2)∵的面積為,∴.由余弦定理得,∴.故的周長為.【點睛】本題考查正弦定理應用,余弦定理解三角形,三角形面積公式,考查計算化簡的能力,屬基礎(chǔ)題18、(1)(2)平方米【解析】(1)由題意得矩形場地的另一邊長為80-2x米,通過矩形面積得出關(guān)于的函數(shù)表達式;(2)利用二次函數(shù)的性質(zhì)求出的最大值即可【小問1詳解】解:由題意得矩形場地的另一邊長為80-2x米,又,得,所以【小問2詳解】解:由(1)得,當且僅當時,函數(shù)取得最大值平方米19、(1)(2)【解析】(1)利用二倍角公式將已知轉(zhuǎn)化為正弦函數(shù),解一元二次方程可得;(2)由余弦定理和(1)可求a的最小值,再由正弦定理可得外接圓半徑的最小值,然后可解.【小問1詳解】因為,所以,解得或(舍去),又為銳角三角形,所以.【小問2詳解】因為,當且僅當時,等號成立,所以.外接圓的半徑,故外接圓面積的最小值為.20、(1),的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(2)證明見解析;【解析】(1)求出函數(shù)的定義域與導函數(shù),依題意可得,即可求出參數(shù)的值,再根據(jù)導函數(shù)與函數(shù)的單調(diào)性的關(guān)系求出函數(shù)的單調(diào)區(qū)間;(2)依題意可得,令,即證,,又,所以即證,令,利用導數(shù)說明其單調(diào)性,即可得解;【詳解】解:(1)因為,定義域為,所以,因為是函數(shù)的極值點,所以,所以,解得,所以,令,則,所以在上單調(diào)遞增,又,所以當時,,即,所以在上單調(diào)遞減,當時,,即,所以上單調(diào)遞增,綜上可得的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(2)證明:依題意即證,即證,令,則,所以即證,因為,所以即證,令,則,所以當時,,當時,所以,所以,所以當時,21、(1)答案見解析;(2);失效費為6.3萬元【解析】(1)根據(jù)相關(guān)系數(shù)公式計算出相關(guān)系數(shù)可得結(jié)果;(2)根據(jù)公式求出和可得關(guān)于的線性回歸方程,再代入可求出結(jié)果.【詳解】(1)由題意,知,,∴結(jié)合參考數(shù)據(jù)知:因為與的相關(guān)系數(shù)近似為0.99,所以與的線性相關(guān)程度相當大,從而可以用線性回歸模型擬合與的關(guān)系(2)∵,∴∴關(guān)于的線性回歸方程為,將代入線性回歸方程得萬元,∴估算該種機械設(shè)備使用8年的失效費為6.3萬元22、(1)(2)直線過定點;理由見解析【解析】(1)根據(jù)題意可求得,進而求得橢圓方程;(2)考慮直線斜率是否存在,設(shè)直線方程并聯(lián)立橢圓方程,得到根與

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論