2026屆北京市第171中學(xué)高三數(shù)學(xué)第一學(xué)期期末綜合測試模擬試題含解析_第1頁
2026屆北京市第171中學(xué)高三數(shù)學(xué)第一學(xué)期期末綜合測試模擬試題含解析_第2頁
2026屆北京市第171中學(xué)高三數(shù)學(xué)第一學(xué)期期末綜合測試模擬試題含解析_第3頁
2026屆北京市第171中學(xué)高三數(shù)學(xué)第一學(xué)期期末綜合測試模擬試題含解析_第4頁
2026屆北京市第171中學(xué)高三數(shù)學(xué)第一學(xué)期期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2026屆北京市第171中學(xué)高三數(shù)學(xué)第一學(xué)期期末綜合測試模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.閱讀名著,品味人生,是中華民族的優(yōu)良傳統(tǒng).學(xué)生李華計劃在高一年級每周星期一至星期五的每天閱讀半個小時中國四大名著:《紅樓夢》、《三國演義》、《水滸傳》及《西游記》,其中每天閱讀一種,每種至少閱讀一次,則每周不同的閱讀計劃共有()A.120種 B.240種 C.480種 D.600種2.設(shè)實數(shù)x,y滿足條件x+y-2?02x-y+3?0x-y?0則A.1 B.2 C.3 D.43.函數(shù)圖象的大致形狀是()A. B.C. D.4.如圖,已知三棱錐中,平面平面,記二面角的平面角為,直線與平面所成角為,直線與平面所成角為,則()A. B. C. D.5.年部分省市將實行“”的新高考模式,即語文、數(shù)學(xué)、英語三科必選,物理、歷史二選一,化學(xué)、生物、政治、地理四選二,若甲同學(xué)選科沒有偏好,且不受其他因素影響,則甲同學(xué)同時選擇歷史和化學(xué)的概率為A. B.C. D.6.已知滿足,,,則在上的投影為()A. B. C. D.27.若,滿足約束條件,則的最大值是()A. B. C.13 D.8.函數(shù)的部分圖像大致為()A. B.C. D.9.設(shè)函數(shù),當(dāng)時,,則()A. B. C.1 D.10.拋物線的準線與軸的交點為點,過點作直線與拋物線交于、兩點,使得是的中點,則直線的斜率為()A. B. C.1 D.11.已知拋物線經(jīng)過點,焦點為,則直線的斜率為()A. B. C. D.12.點在所在的平面內(nèi),,,,,且,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知兩個單位向量滿足,則向量與的夾角為_____________.14.已知,,分別為內(nèi)角,,的對邊,,,,則的面積為__________.15.如圖,在三棱錐中,平面,,已知,,則當(dāng)最大時,三棱錐的體積為__________.16.集合,,若是平面上正八邊形的頂點所構(gòu)成的集合,則下列說法正確的為________①的值可以為2;②的值可以為;③的值可以為;三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求不等式的解集;(2)若函數(shù)的最大值為,且,求的最小值.18.(12分)已知函數(shù)f(x)=|x-2|-|x+1|.(Ⅰ)解不等式f(x)>1;(Ⅱ)當(dāng)x>0時,若函數(shù)g(x)(a>0)的最小值恒大于f(x),求實數(shù)a的取值范圍.19.(12分)已知.(1)當(dāng)時,求不等式的解集;(2)若,,證明:.20.(12分)已知函數(shù).(1)當(dāng)時,求函數(shù)的值域;(2)的角的對邊分別為且,,求邊上的高的最大值.21.(12分)為了解廣大學(xué)生家長對校園食品安全的認識,某市食品安全檢測部門對該市家長進行了一次校園食品安全網(wǎng)絡(luò)知識問卷調(diào)查,每一位學(xué)生家長僅有一次參加機會,現(xiàn)對有效問卷進行整理,并隨機抽取出了200份答卷,統(tǒng)計這些答卷的得分(滿分:100分)制出的頻率分布直方圖如圖所示,由頻率分布直方圖可以認為,此次問卷調(diào)查的得分服從正態(tài)分布,其中近似為這200人得分的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點值作為代表).(1)請利用正態(tài)分布的知識求;(2)該市食品安全檢測部門為此次參加問卷調(diào)查的學(xué)生家長制定如下獎勵方案:①得分不低于的可以獲贈2次隨機話費,得分低于的可以獲贈1次隨機話費:②每次獲贈的隨機話費和對應(yīng)的概率為:獲贈的隨機話費(單位:元)概率市食品安全檢測部門預(yù)計參加此次活動的家長約5000人,請依據(jù)以上數(shù)據(jù)估計此次活動可能贈送出多少話費?附:①;②若;則,,.22.(10分)的內(nèi)角的對邊分別為,已知.(1)求的大??;(2)若,求面積的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

首先將五天進行分組,再對名著進行分配,根據(jù)分步乘法計數(shù)原理求得結(jié)果.【詳解】將周一至周五分為組,每組至少天,共有:種分組方法;將四大名著安排到組中,每組種名著,共有:種分配方法;由分步乘法計數(shù)原理可得不同的閱讀計劃共有:種本題正確選項:【點睛】本題考查排列組合中的分組分配問題,涉及到分步乘法計數(shù)原理的應(yīng)用,易錯點是忽略分組中涉及到的平均分組問題.2、C【解析】

畫出可行域和目標函數(shù),根據(jù)目標函數(shù)的幾何意義平移得到答案.【詳解】如圖所示:畫出可行域和目標函數(shù),z=x+y+1,即y=-x+z-1,z表示直線在y軸的截距加上1,根據(jù)圖像知,當(dāng)x+y=2時,且x∈-13,1時,故選:C.【點睛】本題考查了線性規(guī)劃問題,畫出圖像是解題的關(guān)鍵.3、B【解析】

判斷函數(shù)的奇偶性,可排除A、C,再判斷函數(shù)在區(qū)間上函數(shù)值與的大小,即可得出答案.【詳解】解:因為,所以,所以函數(shù)是奇函數(shù),可排除A、C;又當(dāng),,可排除D;故選:B.【點睛】本題考查函數(shù)表達式判斷函數(shù)圖像,屬于中檔題.4、A【解析】

作于,于,分析可得,,再根據(jù)正弦的大小關(guān)系判斷分析得,再根據(jù)線面角的最小性判定即可.【詳解】作于,于.因為平面平面,平面.故,故平面.故二面角為.又直線與平面所成角為,因為,故.故,當(dāng)且僅當(dāng)重合時取等號.又直線與平面所成角為,且為直線與平面內(nèi)的直線所成角,故,當(dāng)且僅當(dāng)平面時取等號.故.故選:A【點睛】本題主要考查了線面角與線線角的大小判斷,需要根據(jù)題意確定角度的正弦的關(guān)系,同時運用線面角的最小性進行判定.屬于中檔題.5、B【解析】

甲同學(xué)所有的選擇方案共有種,甲同學(xué)同時選擇歷史和化學(xué)后,只需在生物、政治、地理三科中再選擇一科即可,共有種選擇方案,根據(jù)古典概型的概率計算公式,可得甲同學(xué)同時選擇歷史和化學(xué)的概率,故選B.6、A【解析】

根據(jù)向量投影的定義,即可求解.【詳解】在上的投影為.故選:A【點睛】本題考查向量的投影,屬于基礎(chǔ)題.7、C【解析】

由已知畫出可行域,利用目標函數(shù)的幾何意義求最大值.【詳解】解:表示可行域內(nèi)的點到坐標原點的距離的平方,畫出不等式組表示的可行域,如圖,由解得即點到坐標原點的距離最大,即.故選:.【點睛】本題考查線性規(guī)劃問題,考查數(shù)形結(jié)合的數(shù)學(xué)思想以及運算求解能力,屬于基礎(chǔ)題.8、A【解析】

根據(jù)函數(shù)解析式,可知的定義域為,通過定義法判斷函數(shù)的奇偶性,得出,則為偶函數(shù),可排除選項,觀察選項的圖象,可知代入,解得,排除選項,即可得出答案.【詳解】解:因為,所以的定義域為,則,∴為偶函數(shù),圖象關(guān)于軸對稱,排除選項,且當(dāng)時,,排除選項,所以正確.故選:A.【點睛】本題考查由函數(shù)解析式識別函數(shù)圖象,利用函數(shù)的奇偶性和特殊值法進行排除.9、A【解析】

由降冪公式,兩角和的正弦公式化函數(shù)為一個角的一個三角函數(shù)形式,然后由正弦函數(shù)性質(zhì)求得參數(shù)值.【詳解】,時,,,∴,由題意,∴.故選:A.【點睛】本題考查二倍角公式,考查兩角和的正弦公式,考查正弦函數(shù)性質(zhì),掌握正弦函數(shù)性質(zhì)是解題關(guān)鍵.10、B【解析】

設(shè)點、,設(shè)直線的方程為,由題意得出,將直線的方程與拋物線的方程聯(lián)立,列出韋達定理,結(jié)合可求得的值,由此可得出直線的斜率.【詳解】由題意可知點,設(shè)點、,設(shè)直線的方程為,由于點是的中點,則,將直線的方程與拋物線的方程聯(lián)立得,整理得,由韋達定理得,得,,解得,因此,直線的斜率為.故選:B.【點睛】本題考查直線斜率的求解,考查直線與拋物線的綜合問題,涉及韋達定理設(shè)而不求法的應(yīng)用,考查運算求解能力,屬于中等題.11、A【解析】

先求出,再求焦點坐標,最后求的斜率【詳解】解:拋物線經(jīng)過點,,,,故選:A【點睛】考查拋物線的基礎(chǔ)知識及斜率的運算公式,基礎(chǔ)題.12、D【解析】

確定點為外心,代入化簡得到,,再根據(jù)計算得到答案.【詳解】由可知,點為外心,則,,又,所以①因為,②聯(lián)立方程①②可得,,,因為,所以,即.故選:【點睛】本題考查了向量模長的計算,意在考查學(xué)生的計算能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由得,即得解.【詳解】由題意可知,則.解得,所以,向量與的夾角為.故答案為:【點睛】本題主要考查平面向量的數(shù)量積的計算和夾角的計算,意在考查學(xué)生對這些知識的理解掌握水平.14、【解析】

根據(jù)題意,利用余弦定理求得,再運用三角形的面積公式即可求得結(jié)果.【詳解】解:由于,,,∵,∴,,由余弦定理得,解得,∴的面積.故答案為:.【點睛】本題考查余弦定理的應(yīng)用和三角形的面積公式,考查計算能力.15、4【解析】設(shè),則,,,,當(dāng)且僅當(dāng),即時,等號成立.,故答案為416、②③【解析】

根據(jù)對稱性,只需研究第一象限的情況,計算:,得到,,得到答案.【詳解】如圖所示:根據(jù)對稱性,只需研究第一象限的情況,集合:,故,即或,集合:,是平面上正八邊形的頂點所構(gòu)成的集合,故所在的直線的傾斜角為,,故:,解得,此時,,此時.故答案為:②③.【點睛】本題考查了根據(jù)集合的交集求參數(shù),意在考查學(xué)生的計算能力和轉(zhuǎn)化能力,利用對稱性是解題的關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)化簡得到,分類解不等式得到答案.(2)的最大值,,利用均值不等式計算得到答案.【詳解】(1)因為,故或或解得或,故不等式的解集為.(2)畫出函數(shù)圖像,根據(jù)圖像可知的最大值.因為,所以,當(dāng)且僅當(dāng)時,等號成立,故的最小值是3.【點睛】本題考查了解不等式,均值不等式求最值,意在考查學(xué)生的計算能力和轉(zhuǎn)化能力.18、(Ⅰ);(Ⅱ)?!窘馕觥?/p>

(Ⅰ)分類討論,去掉絕對值,求得原絕對值不等式的解集;(Ⅱ)由條件利用基本不等式求得,,再由,求得的范圍.【詳解】(Ⅰ)當(dāng)時,原不等式可化為,此時不成立;當(dāng)時,原不等式可化為,解得,即;當(dāng)時,原不等式可化為,解得.綜上,原不等式的解集是.(Ⅱ)因為,當(dāng)且僅當(dāng)時等號成立,所以.當(dāng)時,,所以.所以,解得,故實數(shù)的取值范圍為.【點睛】本題主要考查了絕對值不等式的解法,以及轉(zhuǎn)化與化歸思想,難度一般;常見的絕對值不等式的解法,法一:利用絕對值不等式的幾何意義求解,體現(xiàn)了數(shù)形結(jié)合的思想;法二:利用“零點分段法”求解,體現(xiàn)了分類討論的思想;法三:通過構(gòu)造函數(shù),利用函數(shù)的圖象求解,體現(xiàn)了函數(shù)與方程的思想.19、(1)(2)見證明【解析】

(1)利用零點分段法討論去掉絕對值求解;(2)利用絕對值不等式的性質(zhì)進行證明.【詳解】(1)解:當(dāng)時,不等式可化為.當(dāng)時,,,所以;當(dāng)時,,.所以不等式的解集是.(2)證明:由,,得,,,又,所以,即.【點睛】本題主要考查含有絕對值不等式問題的求解,含有絕對值不等式的解法一般是使用零點分段討論法.20、(1).(2)【解析】

(1)由題意利用三角恒等變換化簡函數(shù)的解析式,再利用正弦函數(shù)的定義域和值域,得出結(jié)論.(2)由題意利用余弦定理?三角形的面積公式?基本不等式求得的最大值,可得邊上的高的最大值.【詳解】解:(1)∵函數(shù),當(dāng)時,,.(2)中,,∴.由余弦定理可得,當(dāng)且僅當(dāng)時,取等號,即的最大值為3.再根據(jù),故當(dāng)取得最大值3時,取得最大值為.【點睛】本題考查降冪公式、兩角和的正弦公式,考查正弦函數(shù)的性質(zhì),余弦定理,三角形面積公式,所用公式較多,選用恰當(dāng)?shù)墓绞墙忸}關(guān)鍵,本題屬于中檔題.21、(1);(2)估計此次活動可能贈送出100000元話費【解析】

(1)根據(jù)正態(tài)分布的性質(zhì)可求的值.(2)設(shè)某家長參加活動可獲贈話費為元,利用題設(shè)條件求出其分布列,再利用公式求出其期望后可得計此次活動可能贈送出的話費數(shù)額.【詳解】(1)根據(jù)題中所給的統(tǒng)計表,結(jié)合題中所給的條件,可以求得又,,所以;(2)根據(jù)題意,某家長參加活動可獲贈話費的可能值有10,20,30,40元,且每位家長獲得贈送1次、2次話費的概率都為,得10元的情況為低于平均值,概率,得20元的情況有兩種,得分低于平均值,一次性獲20元話費;得分不低于平均值,2次均獲贈10元話費,概率,得30元的情況為:得分不低于平均值,一次獲贈10元話費,另一次獲贈20元話費,其概率為,得40元的其情況得分不低于平均值,兩次機會均獲20元話費,概率為.所以變量的分布列為:某家長獲贈話費的期望為.所以估計此次活動可能贈送出100000元話費.【點睛】本題考查正態(tài)分布、離散型隨機變量的分布列及數(shù)學(xué)期望,注意與正態(tài)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論