版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2026屆湖南省懷化市中方縣第二中學高二數(shù)學第一學期期末達標檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中,角A,B,C所對的邊分別為a,b,c,,則的形狀為()A.正三角形 B.等腰直角三角形C.直角三角形 D.等腰三角形2.設(shè)是函數(shù)的導函數(shù),的圖象如圖所示,則的圖象最有可能的是()A. B.C. D.3.已知是橢圓的左焦點,為橢圓上任意一點,點坐標為,則的最大值為()A. B.13C.3 D.54.若數(shù)列的前項和,則此數(shù)列是()A.等差數(shù)列 B.等比數(shù)列C.等差數(shù)列或等比數(shù)列 D.以上說法均不對5.已知等比數(shù)列的前項和為,若,,則()A.20 B.30C.40 D.506.拋物線的焦點坐標A. B.C. D.7.當我們停放自行車時,只要將自行車旁的撐腳放下,自行車就穩(wěn)了,這用到了()A.三點確定一平面 B.不共線三點確定一平面C.兩條相交直線確定一平面 D.兩條平行直線確定一平面8.如圖,正四棱柱ABCD—A1B1C1D1中,AA1=2AB,則異面直線A1B與AD1所成角的余弦值為A. B.C. D.9.雙曲線的左、右焦點分別為、,P為雙曲線C的右支上一點.以O(shè)為圓心a為半徑的圓與相切于點M,且,則該雙曲線的漸近線為()A. B.C. D.10.將一個表面積為的球用一個正方體盒子裝起來,則這個正方體盒子的最小體積為()A. B.C. D.11.若指數(shù)函數(shù)(且)與三次函數(shù)的圖象恰好有兩個不同的交點,則實數(shù)的取值范圍是()A. B.C. D.12.已知函數(shù)有兩個不同的零點,則實數(shù)的取值范圍是()A B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若直線與圓有公共點,則b的取值范圍是_____14.用一個平面去截半徑為5cm的球,截面面積是則球心到截面的距離為_______15.數(shù)據(jù):1,1,3,4,6的方差是______.16.若等比數(shù)列的前n項和為,且,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知兩點(1)求以線段為直徑的圓C的方程;(2)在(1)中,求過M點的圓C的切線方程18.(12分)如圖,已知在四棱錐中,平面,四邊形為直角梯形,,,.(1)求直線與平面所成角的正弦值;(2)在線段上是否存在點,使得二面角的余弦值?若存在,指出點的位置;若不存在,說明理由.19.(12分)已知數(shù)列滿足且(1)求證:數(shù)列為等差數(shù)列,并求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前n項和為.20.(12分)如圖,在四棱錐中,底面ABCD為直角梯形,,,平面底面ABCD,Q為AD的中點,M是棱PC的中點,,,(1)求證:;(2)求直線PB與平面MQB所成角的正弦值21.(12分)已知在△中,角A,B,C的對邊分別是a,b,c,且.(1)求角C的大??;(2)若,求△的面積S的最大值.22.(10分)點A、B分別是橢圓長軸的左、右端點,點F是橢圓的右焦點,點P在橢圓上,且位于軸上方,.(1)求點P的坐標;(2)設(shè)M是橢圓長軸AB上的一點,M到直線AP的距離等于,求橢圓上的點到點M的距離的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)三角恒等變換結(jié)合正弦定理化簡求得,即可判定三角形形狀.【詳解】解:由題,得,即,由正弦定理可得:,所以,所以三角形中,所以,又,所以,即三角形為直角三角形.故選:C.2、C【解析】利用導函數(shù)的圖象,判斷導函數(shù)的符號,得到函數(shù)的單調(diào)性以及函數(shù)的極值點,然后判斷選項即可【詳解】解:由題意可知:和時,,函數(shù)是增函數(shù),時,,函數(shù)是減函數(shù);是函數(shù)的極大值點,是函數(shù)的極小值點;所以函數(shù)的圖象只能是故選:C3、B【解析】利用橢圓的定義求解.【詳解】如圖所示:,故選:B4、D【解析】利用數(shù)列通項與前n項和的關(guān)系和等差數(shù)列及等比數(shù)列的定義判斷.【詳解】當時,,當時,,當時,,所以是等差數(shù)列;當時,為非等差數(shù)列,非等比數(shù)列’當時,,所以是等比數(shù)列,故選:D5、B【解析】根據(jù)等比數(shù)列前項和的性質(zhì)進行求解即可.【詳解】因為是等比數(shù)列,所以成等比數(shù)列,即成等比數(shù)列,顯然,故選:B6、B【解析】由拋物線方程知焦點在x軸正半軸,且p=4,所以焦點坐標為,所以選B7、B【解析】自行車前后輪與撐腳分別接觸地面,使得自行車穩(wěn)定,此時自行車與地面的三個接觸點不在同一條線上.【詳解】自行車前后輪與撐腳分別接觸地面,此時三個接觸點不在同一條線上,所以可以確定一個平面,即地面,從而使得自行車穩(wěn)定.故選B項.【點睛】本題考查不共線的三個點確定一個平面,屬于簡單題.8、D【解析】設(shè)AA1=2AB=2,因為,所以異面直線A1B與AD1所成角,,故選D.9、A【解析】連接、,利用中位線定理和雙曲線定義構(gòu)建參數(shù)關(guān)系,即求得漸近線方程.【詳解】如圖,連接、,∵M是的中點,∴是的中位線,∴,且,根據(jù)雙曲線的定義,得,∴,∵與以原點為圓心a為半徑的圓相切,∴,可得,中,,即得,,解得,即,得.由此得雙曲線的漸近線方程為.故選:A.【點睛】本題考查了雙曲線的定義的應(yīng)用和漸近線的求法,屬于中檔題.10、C【解析】求出球的半徑,要使這個正方形盒子的體積最小,則這個正方體正好是該球的外切正方體,所以正方體的棱長等于球的直徑,從而可得出答案.【詳解】解:設(shè)球的半徑為,則,得,故該球的半徑為11cm,若要使這個正方形盒子的體積最小,則這個正方體正好是該球的外切正方體,所以正方體的棱長等于球的直徑,即22cm,所以這個正方體盒子的最小體積為.故選:C.11、A【解析】分析可知直線與曲線在上的圖象有兩個交點,令可得出,令,問題轉(zhuǎn)化為直線與曲線有兩個交點,利用導數(shù)分析函數(shù)的單調(diào)性與極值,數(shù)形結(jié)合可得出實數(shù)的取值范圍.【詳解】當時,,,此時兩個函數(shù)的圖象無交點;當時,由得,可得,令,其中,則直線與曲線有兩個交點,,當時,,此時函數(shù)單調(diào)遞增,當時,,此時函數(shù)單調(diào)遞減,則,且當時,,作出直線與曲線如下圖所示:由圖可知,當時,即當時,指數(shù)函數(shù)(且)與三次函數(shù)的圖象恰好有兩個不同的交點.故選:A.12、A【解析】分離參數(shù),求函數(shù)的導數(shù),根據(jù)函數(shù)有兩個零點可知函數(shù)的單調(diào)性,即可求解.【詳解】由題意得有兩個零點令,則且所以,在上為增函數(shù),可得,當,在上單調(diào)遞減,可得,即要有兩個零點有兩個零點,實數(shù)的取值范圍是.故選:A【點睛】方法點睛:已知函數(shù)有零點求參數(shù)取值范圍常用的方法和思路(1)直接法:直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)值域問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,在同一平面直角坐標系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解二、填空題:本題共4小題,每小題5分,共20分。13、【解析】直線與圓有交點,則圓心到直線的距離小于或等于半徑.【詳解】直線即,圓的圓心為,半徑為,若直線與圓有交點,則,解得,故實數(shù)取值范圍是.故答案為:14、4cm【解析】根據(jù)圓面積公式算出截面圓的半徑,利用球的截面圓性質(zhì)與勾股定理算出球心到截面的距離【詳解】解:設(shè)截面圓的半徑為r,截面的面積是,,可得又球的半徑為5cm,根據(jù)球的截面圓性質(zhì),可得截面到球心的距離為故答案為:4cm【點睛】本題主要考查了球的截面圓性質(zhì)、勾股定理等知識,考查了空間想象能力,屬于基礎(chǔ)題15、##3.6【解析】先計算平均數(shù),再計算方差.【詳解】該組數(shù)據(jù)的平均數(shù)為,方差為故答案為:16、5【解析】根據(jù)題意和等比數(shù)列的求和公式,求得,結(jié)合求和公式,即可求解.【詳解】因為,若時,可得,故,所以,化簡得,整理得,解得或,因為,解得,所以.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)求出圓心和半徑即可得到答案;(2)根據(jù)題意先求出切線的斜率,進而通過點斜式求出切線方程.【小問1詳解】由題意,圓心,半徑,則圓C的方程為:.【小問2詳解】由題意,,則切線斜率為-1,所以切線方程為:.18、(1);(2)存在,為上靠近點的三等分點【解析】(1)分別以所在的直線為軸,建立如圖所示的空間直角坐標系,求出的坐標以及平面的一個法向量,計算即可求解;(2)假設(shè)線段上存在點符合題意,設(shè)可得,求出平面的法向量和平面的法向量,利用即可求出的值,即可求解.【詳解】(1)分別以所在的直線為軸,建立如圖所示的空間直角坐標系,如圖所示:則,,,.不妨設(shè)平面的一個法向量,則有,即,取.設(shè)直線與平面所成的角為,則,所以直線與平面所成角的正弦值為;(2)假設(shè)線段上存在點,使得二面角的余弦值.設(shè),則,從而,,.設(shè)平面的法向量,則有,即,取.設(shè)平面的法向量,則有,即,取.,解得:或(舍),故存在點滿足條件,為上靠近點的三等分點【點睛】求空間角的常用方法:(1)定義法,由異面直線所成角、線面角、二面角的定義,結(jié)合圖形,作出所求空間角,再結(jié)合題中條件,解對應(yīng)三角形,即可求出結(jié)果;(2)向量法:建立適當?shù)目臻g直角坐標系,通過計算向量夾角(直線方向向量與直線方向向量、直線方向向量與平面法向量,平面法向量與平面法向量)余弦值,即可求出結(jié)果.19、(1)證明見解析,;(2).【解析】(1)對遞推公式進行變形,結(jié)合等差數(shù)列的定義進行求解即可;(2)運用裂項相消法進行求解即可.【小問1詳解】因為,且,所以即,所以數(shù)列是公差為2的等差數(shù)列.又,所以即;【小問2詳解】由(1)得,所以.故.20、(1)證明見解析(2)【解析】(1)根據(jù)等腰三角形可得,再由面面垂直的性質(zhì)得出線面垂直,即可求證;(2)建立空間直角坐標系,利用向量法求線面角.【小問1詳解】因為Q為AD的中點,,所以,又因為平面底面ABCD,平面底面,平面PAD,所以平面ABCD,又平面ABCD,所以【小問2詳解】由題可知QA、QB、QP兩兩互相垂直,以QA為x軸、QB為y軸、QP為z軸建立空間坐標系,如圖,根據(jù)題意,則,,,,,由M是棱PC的中點可知,,設(shè)平面MQB的法向量為,,,則,即令,則,,故平面MQB的一個法向量為,所以,所以直線PB與平面MQB所成角的正弦值為21、(1);(2).【解析】(1)由正弦定理、和角正弦公式及三角形內(nèi)角的性質(zhì)可得,進而可得C的大?。唬?)由余弦定理可得,根據(jù)基本不等式可得,由三角形面積公式求面積的最大值,注意等號成立條件.【小問1詳解】由正弦定理知:,∴,又,∴,則,故.【小問2詳解】由,又,則,∴,當且僅當時等號成立,∴△的面積S的最大值為.22、(1)(,).(2)【解析】(1)根據(jù)條件列關(guān)于P點坐標得方程組,解得結(jié)果,(2)先根據(jù)點到直線距離公式結(jié)合條件解得點M坐標,再建立的函數(shù)解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 學校規(guī)范教育收費制度
- 醫(yī)保平臺操作規(guī)范制度
- 規(guī)范了醫(yī)療機構(gòu)管理制度
- 國際刑警警銜制度規(guī)范
- 完善公司管理制度規(guī)范
- 醫(yī)院小兒浴室制度規(guī)范
- 培訓機構(gòu)教務(wù)規(guī)范制度
- 醫(yī)療文書書寫規(guī)范制度
- 飛機特種設(shè)備檢測與修理工變革管理知識考核試卷含答案
- 離子注入工安全防護能力考核試卷含答案
- 別墅澆筑施工方案(3篇)
- 小學信息技術(shù)教學備課全流程解析
- 腫瘤放射治療的新技術(shù)進展
- 退崗修養(yǎng)協(xié)議書范本
- 高考語文二輪復習高中語文邏輯推斷測試試題附解析
- 土壤微生物群落結(jié)構(gòu)優(yōu)化研究
- 2024外研版四年級英語上冊Unit 4知識清單
- 四川省南充市2024-2025學年部編版七年級上學期期末歷史試題
- 國有企業(yè)三位一體推進內(nèi)控風控合規(guī)建設(shè)的問題和分析
- 2025年高二數(shù)學建模試題及答案
- 儲能集裝箱知識培訓總結(jié)課件
評論
0/150
提交評論