廣東省深圳市福田區(qū)耀華實(shí)驗(yàn)學(xué)校華文班2026屆數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
廣東省深圳市福田區(qū)耀華實(shí)驗(yàn)學(xué)校華文班2026屆數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
廣東省深圳市福田區(qū)耀華實(shí)驗(yàn)學(xué)校華文班2026屆數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
廣東省深圳市福田區(qū)耀華實(shí)驗(yàn)學(xué)校華文班2026屆數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
廣東省深圳市福田區(qū)耀華實(shí)驗(yàn)學(xué)校華文班2026屆數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

廣東省深圳市福田區(qū)耀華實(shí)驗(yàn)學(xué)校華文班2026屆數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在直角坐標(biāo)系中,直線的傾斜角是A.30° B.60°C.120° D.150°2.如圖所示,一圓形紙片的圓心為O,F(xiàn)是圓內(nèi)一定點(diǎn),M是圓周上一動(dòng)點(diǎn),把紙片折疊使M與F重合,然后抹平紙片,折痕為CD,設(shè)CD與OM交于點(diǎn)P,則點(diǎn)P的軌跡是()A.圓 B.雙曲線C.拋物線 D.橢圓3.過雙曲線的左焦點(diǎn)作x軸的垂線交曲線C于點(diǎn)P,為右焦點(diǎn),若,則雙曲線的離心率為()A. B.C. D.4.已知F1(-1,0),F(xiàn)2(1,0)是橢圓的兩個(gè)焦點(diǎn),過F1的直線l交橢圓于M,N兩點(diǎn),若△MF2N的周長為8,則橢圓方程為()A. B.C. D.5.?dāng)?shù)學(xué)美的表現(xiàn)形式不同于自然美或藝術(shù)美那樣直觀,它蘊(yùn)藏于特有的抽象概念,公式符號(hào),推理論證,思維方法等之中,揭示了規(guī)律性,是一種科學(xué)的真實(shí)美.平面直角坐標(biāo)系中,曲線:就是一條形狀優(yōu)美的曲線,對于此曲線,給出如下結(jié)論:①曲線圍成的圖形的面積是;②曲線上的任意兩點(diǎn)間的距離不超過;③若是曲線上任意一點(diǎn),則的最小值是其中正確結(jié)論的個(gè)數(shù)為()A. B.C. D.6.算盤是中國傳統(tǒng)計(jì)算工具,是中國人在長期使用算籌的基礎(chǔ)上發(fā)明的,“珠算”一詞最早見于東漢徐岳所撰的《數(shù)術(shù)記遺》,其中有云:“珠算控帶四時(shí),經(jīng)緯三才.”北周甄鸞為此作注,大意是:把木板刻為3部分,上、下兩部分是停游珠用的,中間一部分是作定位用的.下圖是一把算盤的初始狀態(tài),自右向左,分別是個(gè)位、十位、百位…,上面一粒珠(簡稱上珠)代表5,下面一粒珠(簡稱下珠)是1,即五粒下珠的大小等于同組一粒上珠的大?。F(xiàn)在從個(gè)位和十位這兩組中隨機(jī)選擇往下?lián)芤涣I现?,往上?粒下珠,得到的數(shù)為質(zhì)數(shù)(除了1和本身沒有其它的約數(shù))的概率是()A. B.C. D.7.設(shè)集合,,則()A. B.C. D.8.如圖,已知多面體,其中是邊長為4的等邊三角形,四邊形是矩形,,平面平面,則點(diǎn)到平面的距離是()A. B.C. D.9.橢圓焦距為()A. B.8C.4 D.10.已知函數(shù)的值域?yàn)椋瑒t實(shí)數(shù)的取值范圍是()A. B.C. D.11.若某群體中的成員只用現(xiàn)金支付的概率為,既用現(xiàn)金支付也用非現(xiàn)金支付的概率為,則不用現(xiàn)金支付的概率為()A. B.C. D.12.曲線上存在兩點(diǎn)A,B到直線到距離等于到的距離,則()A.12 B.13C.14 D.15二、填空題:本題共4小題,每小題5分,共20分。13.如圖,一個(gè)酒杯的內(nèi)壁的軸截面是拋物線的一部分,杯口寬cm,杯深8cm,稱為拋物線酒杯.①在杯口放一個(gè)表面積為的玻璃球,則球面上的點(diǎn)到杯底的最小距離為______cm;②在杯內(nèi)放入一個(gè)小的玻璃球,要使球觸及酒杯底部,則玻璃球的半徑的取值范圍為______(單位:cm)14.橢圓與雙曲線有公共焦點(diǎn),設(shè)橢圓與雙曲線在第一象限內(nèi)交于點(diǎn),橢圓與雙曲線的離心率分別為為坐標(biāo)原點(diǎn),,則的取值范圍是___________.15.函數(shù)單調(diào)增區(qū)間為______.16.中國古代《易經(jīng)》一書中記載,人們通過在繩子上打結(jié)來記錄數(shù)量,即“結(jié)繩計(jì)數(shù)”,如圖,一位古人在從右到左依次排列的紅繩子上打結(jié),滿三進(jìn)一,用來記錄每年進(jìn)的錢數(shù).由圖可得,這位古人一年的收入的錢數(shù)為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的焦點(diǎn)F到準(zhǔn)線的距離為2(1)求C的方程;(2)已知O為坐標(biāo)原點(diǎn),點(diǎn)P在C上,點(diǎn)Q滿足,求直線斜率最大值.18.(12分)在公差為的等差數(shù)列中,已知,且成等比數(shù)列.(Ⅰ)求;(Ⅱ)若,求.19.(12分)在棱長為的正方體中,、分別為線段、的中點(diǎn).(1)求平面與平面所成銳二面角的余弦值;(2)求直線到平面的距離.20.(12分)圓心為的圓經(jīng)過點(diǎn),,且圓心在上,(1)求圓的標(biāo)準(zhǔn)方程;(2)過點(diǎn)作直線交圓于且,求直線的方程.21.(12分)一項(xiàng)“過關(guān)游戲”規(guī)則規(guī)定:在第關(guān)要拋擲一顆正六面體骰子次,每次擲得的點(diǎn)數(shù)均相互獨(dú)立,如果這次拋擲所出現(xiàn)的點(diǎn)數(shù)之和大于,則算過關(guān).(1)這個(gè)游戲最多過幾關(guān)?(2)某人連過前兩關(guān)的概率是?(3)某人連過前三關(guān)的概率是?22.(10分)的內(nèi)角A,B,C的對邊分別為a,b,c.已知.(1)求B(2)___________,若問題中的三角形存在,試求出;若問題中的三角形不存在,請說明理由.在①,②,③這三個(gè)條件中任選一個(gè),補(bǔ)充在橫線上.注:如果選擇多個(gè)條件分別解答,按第一個(gè)解答計(jì)分.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)直線方程得到直線的斜率后可得直線的傾斜角.【詳解】設(shè)直線的傾斜角為,則,因,故,故選D.【點(diǎn)睛】直線的斜率與傾斜角的關(guān)系是:,當(dāng)時(shí),直線的斜率不存在,注意傾斜角的范圍.2、D【解析】根據(jù)題意知,所以,故點(diǎn)P的軌跡是橢圓.【詳解】由題意知,關(guān)于CD對稱,所以,故,可知點(diǎn)P的軌跡是橢圓.【點(diǎn)睛】本題主要考查了橢圓的定義,屬于中檔題.3、D【解析】由題知是等腰直角三角形,,又根據(jù)通徑的結(jié)論知,結(jié)合可列出關(guān)于的二次齊次式,即可求解離心率.【詳解】由題知是等腰直角三角形,且,,又,,即,,,即,解得,,.故選:D.4、A【解析】由題得c=1,再根據(jù)△MF2N的周長=4a=8得a=2,進(jìn)而求出b的值得解.【詳解】∵F1(-1,0),F(xiàn)2(1,0)是橢圓的兩個(gè)焦點(diǎn),∴c=1,又根據(jù)橢圓的定義,△MF2N的周長=4a=8,得a=2,進(jìn)而得b=,所以橢圓方程為.故答案為A【點(diǎn)睛】本題主要考查橢圓的定義和橢圓方程的求法,意在考查學(xué)生對這些知識(shí)的掌握水平和分析推理能力.5、C【解析】結(jié)合已知條件寫出曲線的解析式,進(jìn)而作出圖像,對于①,通過圖像可知,所求面積為四個(gè)半圓和一個(gè)正方形面積之和,結(jié)合數(shù)據(jù)求解即可;對于②,根據(jù)圖像求出曲線上的任意兩點(diǎn)間的距離的最大值即可判斷;對于③,將問題轉(zhuǎn)化為點(diǎn)到直線的距離,然后利用圓上一點(diǎn)到直線的距離的最小值為圓心到直線的距離減去半徑即可求解.【詳解】當(dāng)且時(shí),曲線的方程可化為:;當(dāng)且時(shí),曲線的方程可化為:;當(dāng)且時(shí),曲線的方程可化為:;當(dāng)且時(shí),曲線的方程可化為:,曲線的圖像如下圖所示:由上圖可知,曲線所圍成的面積為四個(gè)半圓的面積與邊長為的正方形的面積之和,從而曲線所圍成的面積,故①正確;由曲線的圖像可知,曲線上的任意兩點(diǎn)間的距離的最大值為兩個(gè)半徑與正方形的邊長之和,即,故②錯(cuò)誤;因?yàn)榈街本€的距離為,所以,當(dāng)最小時(shí),易知在曲線的第一象限內(nèi)的圖像上,因?yàn)榍€的第一象限內(nèi)的圖像是圓心為,半徑為的半圓,所以圓心到的距離,從而,即,故③正確,故選:C.6、B【解析】根據(jù)古典概型概率計(jì)算公式,計(jì)算出所求的概率.【詳解】依題有,算盤所表示的數(shù)可能有:17,26,8,35,62,71,80,53,其中是質(zhì)數(shù)的有:17,71,53,故所求事件的概率為故選:B7、C【解析】根據(jù)集合交集和補(bǔ)集的概念及運(yùn)算,即可求解.【詳解】由題意,集合,,根據(jù)補(bǔ)集的運(yùn)算,可得,所以.故選:C.8、C【解析】利用面面垂直性質(zhì)結(jié)合已知尋找兩兩垂直的三條直線建立空間直角坐標(biāo)系,用向量法可解.【詳解】取的中點(diǎn)O,連接OB,過O在平面ACDE面內(nèi)作交DE于F∵平面平面ABC,平面ACDE平面ABC=AC,平面ACDE,∴平面ABC∴∵是邊長為4的等邊三角形,四邊形ACDE是矩形,∴以O(shè)為原點(diǎn),OA,OB,OF分別為x,y,z軸,建立如圖所示空間直角坐標(biāo)系則,,,設(shè)平面ABD的單位法向量,,由解得取,則∴點(diǎn)C到平面ABD的距離.故選:C9、A【解析】由題意橢圓的焦點(diǎn)在軸上,故,求解即可【詳解】由題意,,故橢圓的焦點(diǎn)在軸上故焦距故選:A10、D【解析】求出函數(shù)在時(shí)值的集合,函數(shù)在時(shí)值的集合,再由已知并借助集合包含關(guān)系即可作答.【詳解】當(dāng)時(shí),在上單調(diào)遞增,,,則在上值的集合是,當(dāng)時(shí),,,當(dāng)時(shí),,當(dāng)時(shí),,即在上單調(diào)遞減,在上單調(diào)遞增,,,則在上值的集合為,因函數(shù)的值域?yàn)?,于是得,則,解得,所以實(shí)數(shù)的取值范圍是.故選:D11、A【解析】利用對立事件概率公式可求得所求事件的概率.【詳解】由對立事件的概率公式可知,該群體中的成員不用現(xiàn)金支付的概率為.故選:A.12、D【解析】由題可知A,B為半圓C與拋物線的交點(diǎn),利用韋達(dá)定理及拋物線的定義即求.【詳解】由曲線,可得,即,為圓心為,半徑為7半圓,又直線為拋物線的準(zhǔn)線,點(diǎn)為拋物線的焦點(diǎn),依題意可知A,B為半圓C與拋物線的交點(diǎn),由,得,設(shè),則,,∴.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】根據(jù)題意,,進(jìn)而得,,故最小距離為;進(jìn)而建立坐標(biāo)系,得拋物線方程為,當(dāng)杯內(nèi)放入一個(gè)小的玻璃球,要使球觸及酒杯底部,此時(shí)設(shè)玻璃球軸截面所在圓的方程為,進(jìn)而只需滿足拋物線上的點(diǎn)到圓心的距離大于等于半徑恒成立,再根據(jù)幾何關(guān)系求解即可.【詳解】因?yàn)楸诜乓粋€(gè)表面積為的玻璃球,所以球的半徑為,又因?yàn)楸趯抍m,所以如圖1所示,有,所以,所以,所以,又因?yàn)楸?cm,即故最小距離為如圖1所示,建立直角坐標(biāo)系,易知,設(shè)拋物線的方程為,所以將代入得,故拋物線方程為,當(dāng)杯內(nèi)放入一個(gè)小的玻璃球,要使球觸及酒杯底部,如圖2,設(shè)玻璃球軸截面所在圓的方程為,依題意,需滿足拋物線上的點(diǎn)到圓心的距離大于等于半徑恒成立,即,則有恒成立,解得,可得.所以玻璃球的半徑的取值范圍為.故答案為:;【點(diǎn)睛】本題考查拋物線的應(yīng)用,考查數(shù)學(xué)建模能力,運(yùn)算求解能力,是中檔題.本題第二問解題的關(guān)鍵在于設(shè)出球觸及酒杯底部的軸截面圓的方程,進(jìn)而將問題轉(zhuǎn)化為拋物線上的點(diǎn)到圓心的距離大于等于半徑恒成立求解.14、【解析】根據(jù)橢圓和雙曲線得定義求得,再根據(jù),可得,從而有,求出的范圍,根據(jù),結(jié)合基本不等式即可得出答案.【詳解】解:設(shè),則有,所以,即,又因?yàn)?,所以,所以,即,則,由,得,所以,所以,則,由,得,因?yàn)椋?dāng)且僅當(dāng),即時(shí),取等號(hào),因?yàn)?,所以,所以,即,所以的取值范圍?故答案為:.15、【解析】利用導(dǎo)數(shù)法求解.【詳解】因?yàn)楹瘮?shù),所以,當(dāng)時(shí),,所以的單調(diào)增區(qū)間是,故答案為:16、25【解析】將原問題轉(zhuǎn)化為三進(jìn)制計(jì)算,即可求解【詳解】解:由題意可得,從左到右的數(shù)字依次為221,即古人一年的收入的錢數(shù)為故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)最大值為.【解析】(1)由拋物線焦點(diǎn)與準(zhǔn)線的距離即可得解;(2)設(shè),由平面向量的知識(shí)可得,進(jìn)而可得,再由斜率公式及基本不等式即可得解.【詳解】(1)拋物線的焦點(diǎn),準(zhǔn)線方程為,由題意,該拋物線焦點(diǎn)到準(zhǔn)線的距離為,所以該拋物線的方程為;(2)[方法一]:軌跡方程+基本不等式法設(shè),則,所以,由在拋物線上可得,即,所以直線的斜率,當(dāng)時(shí),;當(dāng)時(shí),,當(dāng)時(shí),因?yàn)?,此時(shí),當(dāng)且僅當(dāng),即時(shí),等號(hào)成立;當(dāng)時(shí),;綜上,直線斜率的最大值為.[方法二]:【最優(yōu)解】軌跡方程+數(shù)形結(jié)合法同方法一得到點(diǎn)Q的軌跡方程為設(shè)直線的方程為,則當(dāng)直線與拋物線相切時(shí),其斜率k取到最值.聯(lián)立得,其判別式,解得,所以直線斜率的最大值為[方法三]:軌跡方程+換元求最值法同方法一得點(diǎn)Q的軌跡方程為設(shè)直線的斜率為k,則令,則的對稱軸為,所以.故直線斜率的最大值為[方法四]參數(shù)+基本不等式法由題可設(shè)因,所以于是,所以則直線的斜率為當(dāng)且僅當(dāng),即,時(shí)等號(hào)成立,所以直線斜率的最大值為【整體點(diǎn)評】方法一根據(jù)向量關(guān)系,利用代點(diǎn)法求得Q的軌跡方程,得到直線OQ的斜率關(guān)于的表達(dá)式,然后利用分類討論,結(jié)合基本不等式求得最大值;方法二同方法一得到點(diǎn)Q的軌跡方程,然后利用數(shù)形結(jié)合法,利用判別式求得直線OQ的斜率的最大值,為最優(yōu)解;方法三同方法一求得Q的軌跡方程,得到直線的斜率k的平方關(guān)于的表達(dá)式,利用換元方法轉(zhuǎn)化為二次函數(shù)求得最大值,進(jìn)而得到直線斜率的最大值;方法四利用參數(shù)法,由題可設(shè),求得x,y關(guān)于的參數(shù)表達(dá)式,得到直線的斜率關(guān)于的表達(dá)式,結(jié)合使用基本不等式,求得直線斜率的最大值.18、(Ⅰ)或(Ⅱ)【解析】(Ⅰ)由題意求得數(shù)列的公差后可得通項(xiàng)公式.(Ⅱ)結(jié)合條件可得,分和兩種情況去掉中的絕對值后,利用數(shù)列的前n項(xiàng)和公式求解試題解析:(Ⅰ)∵成等比數(shù)列,∴,整理得,解得或,當(dāng)時(shí),;當(dāng)時(shí),所以或(Ⅱ)設(shè)數(shù)列前項(xiàng)和為,∵,∴,當(dāng)時(shí),,∴;當(dāng)時(shí),綜上19、(1);(2).【解析】(1)以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,利用空間向量法可求得平面與平面所成銳二面角的余弦值;(2)證明出平面,利用空間向量法可求得直線到平面的距離.【小問1詳解】解:以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,則、、、、,設(shè)平面的法向量為,,,由,取,可得,易知平面的一個(gè)法向量為,,因此,平面與平面所成銳二面角的余弦值為.【小問2詳解】解:,則,所以,,因?yàn)槠矫?,所以,平面,,所以,直線到平面的距離為.20、(1);(2)或.【解析】(1)求出線段的垂直平分線方程,求出此直線與已知直線的交點(diǎn)坐標(biāo)即為圓心坐標(biāo),再求得半徑后可得圓的標(biāo)準(zhǔn)方程;(2)檢驗(yàn)直線斜率不存在時(shí)是否滿足題意,在斜率存在時(shí)設(shè)方程為,求得圓心到直線的距離,由勾股定理得弦長,由弦長為8得參數(shù),得直線方程【詳解】(1)由已知,中點(diǎn)坐標(biāo)為,垂直平分線方程為則由解得,所以圓心,因此半徑所以圓的標(biāo)準(zhǔn)方程(2)由可得圓心到直線的距離當(dāng)直線斜率不存在時(shí),其方程為,當(dāng)直線斜率存在時(shí),設(shè)其方程為,則,解得,此時(shí)其方程為,所以直線方程為或.【點(diǎn)睛】方法點(diǎn)睛:本題考查求圓的標(biāo)準(zhǔn)方程,考查直線與圓相交弦長.求弦長方法是幾何法:即求出圓心到弦所在直線距離,由勾股定理求得弦長.求直線方程時(shí)注意檢驗(yàn)直線斜率不存在的情形21、(1)關(guān)(2)(3)【解析】(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論