九年級中考 幾何綜合題型之存在性問題:解題策略與??碱}型(教師版)_第1頁
九年級中考 幾何綜合題型之存在性問題:解題策略與??碱}型(教師版)_第2頁
九年級中考 幾何綜合題型之存在性問題:解題策略與??碱}型(教師版)_第3頁
九年級中考 幾何綜合題型之存在性問題:解題策略與常考題型(教師版)_第4頁
九年級中考 幾何綜合題型之存在性問題:解題策略與??碱}型(教師版)_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

幾何綜合題型之存在性問題:解題策略與??碱}型適用學(xué)科初中數(shù)學(xué)適用年級適用區(qū)域蘇州課時時長(分鐘)120分鐘知識點1.解決此類問題的一般思路:假設(shè)存在→推理論證→得出結(jié)論。若能導(dǎo)出合理的結(jié)果,就做出“存在”的判斷;導(dǎo)出矛盾,就做出不存在的判斷。教學(xué)目標1.掌握由數(shù)量關(guān)系確定的“存在性”問題的解決方法。2.掌握由位置關(guān)系確定的“存在性”問題的解決方法。教學(xué)重點借助方程思想解決又數(shù)量關(guān)系、幾何關(guān)系、位置關(guān)系確定的“存在性”問題。教學(xué)難點1.由位置關(guān)系確定的“存在性”問題。教學(xué)過程一、什么是存在性問題?存在性問題是指判斷滿足某種條件的事物是否存在的問題,這類問題的知識覆蓋面較廣,綜合性較強,題意構(gòu)思非常精巧,解題方法靈活,對分析問題和解決問題的能力要求較高,是近幾年來各地中考的“熱點”。二、知識講解1.存在性問題是根據(jù)已知的條件,探索制定適合某個問題的結(jié)論的數(shù)值、點、直線或其圖形是否存在的題目,在初二幾何部分常見的類型有:(1)等腰三角形存在問題;(2)直角三角形存在問題,這類題型通常會結(jié)合動態(tài)變化問題進行考查。2.解法的一般思路是:假設(shè)存在→推理論證→得出結(jié)論。若能導(dǎo)出合理的結(jié)果,就做出“存在”的判斷,導(dǎo)出矛盾,就做出不存在的判斷??键c1軸對稱圖形中的存在性問題考點2直角三角形中的存在性問題考點3等腰三角形中的存在性問題三、例題精析【例題1】【題干】如圖,在△ABC中,AB=AC,∠A=36°,BD、CE分別為∠ABC、∠ACB的平分線,則圖中等腰三角形共有()A.5個 B.6個 C.7個 D.8個【答案】D【解析】【例題2】【題干】如圖,在3×3的正方形網(wǎng)格中,已有兩個小正方形被涂黑.再將圖中其余小正方形任意涂黑一個,使整個圖案構(gòu)成一個軸對稱圖形的方法有_______種.【答案】5【解析】【例題3】【題干】如圖,△ABC是銳角三角形,兩條高BD、CE相交于點0,且OB=OC,先證明△ABC為等腰三角形。判斷點O是否在∠BAC的平分線上,并說明理由.【答案】點O在∠BAC的平分線上【解析】【例題4】【題干】如圖,△ABC中,∠ACB□□90°,AB□□5cm,BC□□3cm,若點P從點A出發(fā),以每秒2cm的速度沿折線A—C—B向點B運動,設(shè)運動時間為t秒(t>0),(1)在AC上是否存在點P,使得PA□□PB?若存在,求出t的值;若不存在,說明理由;(2)若點P恰好在△ABC的角平分線上,請求出t的值,說明理由.ABABCABC備用圖備用圖【答案】【解析】(1)在Rt△ABC中,∴......................1分假設(shè)存在點P使得PA=PB,則PA=PB=2t,PC=4-2t,在Rt△BPC中,∴........................3分∴.........................................4分(2)當(dāng)點P在點C或點B處時,一定在△ABC的角平分線上,此時t=2或t=3.5秒;..6分點P在邊AC上時,即點P在∠ABC的平分線上時,點P到AB的距離等于4-2t,∴..........................................7分∴..................................................8分點P在邊BC上時,即點P在∠BAC的平分線上時,點P到AB的距離等于2t-4,∴.......................................9分∴..................................................10分綜上,t=2或t=3.5或或【例題5】【題干】如圖,在△ABC中,∠BAC=90°,AB=AC,BD平分∠ABC時(本題8分)(1)若CE⊥BD于E,①∠ECD=0;②求證:BD=2EC;(2)如圖,點P是射線BA上A點右邊一動點,以CP為斜邊作等腰直角△CPF,其中∠F=90°,點Q為∠FPC與∠PFC的角平分線的交點.當(dāng)點P運動時,點Q是否一定在射線BD上?若在,請證明,若不在;請說明理由.【答案】【解析】(1)∠ECD=22.5°;…………2′②延長CE交BA的延長線于點G,如圖1:∵BD平分∠ABC,CE⊥BD,∴CE=GE,…………3′在△ABD與△ACG中,∴△ABD≌△ACG(AAS),∴BD=CG=2CE;………………4′(2)點Q一定在射線BD上,理由如下連接CQ,過點Q作QM⊥BP,QN⊥BC,垂足為M、N∵QF為∠PFC的角平分線,△CPF為等腰直角三角形PPPPQQFFDDBBCCAAMN∴PQ=QC∵Q為∠FPC與∠PFC的角平分線的交點∴CQ平分∠FCP∵△CPF為等腰直角三角形∴∠FCP=∠FPC=450∴∠QCP=∠QPC=22.50∴∠PQC=1350………………5′在四邊形QCBP中,QM⊥BP,QN⊥BC,∠ABC=450∴∠MQC=1350∴∠MQC=∠PQC………………6′∴∠NQC=∠MQP又∵QC=QPQM⊥BP,QN⊥BC∴可證△QPM≌△QCN∴QM=QN……7′又∵QM⊥BP,QN⊥BC∴點Q一定在射線BD上…………8′四、課堂運用【基礎(chǔ)】如圖所示的正方形網(wǎng)格中,網(wǎng)格線的交點稱為格點.已知A、B是兩格點,如果C也是圖中的格點,且使得△ABC為等腰三角形,則點C的個數(shù)是()A.6 B. 7 C. 8 D. 9【答案】C【解析】如上圖:分情況討論.①AB為等腰△ABC底邊時,符合條件的C點有4個;②AB為等腰△ABC其中的一條腰時,符合條件的C點有4個.故選C.2.在等邊△ABC的平面內(nèi)找一點P,使△PBC、△PAB、△PAC均為等腰三角形,具備這樣條件的P點有多少個?()A.1個 B.4個 C.7個 D.10個【答案】D【解析】3.已知:如圖,線段AB的端點A在直線上,AB與的夾角為60°,請在直線上另找一點C,使△ABC是等腰三角形.這樣的點有(

)

A.1個

B.2個C.3個D.4個

【答案】B【解析】4.如圖,在梯形ABCD中,AD∥BC,∠ABC=90°,AD=AB=6,BC=14,M是BC邊上一點,且

MC=8.動點P從點C出發(fā),沿C→D→A→B的路線運動到點B停止.在點P運動的過程中,使△PMC為等腰三角形的點P有(

)

A.2個B.3個C.4個D.5個【答案】D【解析】【鞏固】1.如圖所示,在長方形ABCD的對稱軸上找一點P,使得△PAB,△PBC均為等腰三角形,則滿足條件的點P有(

)

A.1個

B.3個

C.5個

D.無數(shù)多個

【答案】【解析】2.如圖,邊長為6的正方形ABCD內(nèi)部有一點P,BP=4,∠PBC=60°,點Q為正方形邊上一動點,且△PBQ是等腰三角形,則符合條件的Q點有____個【答案】【解析】【拔高】數(shù)學(xué)活動課上,老師在黑板上畫直線l平行于射線AN(如圖),讓同學(xué)們在直線l和射線AN上各找一點B和點C,使得以A、B、C為頂點的三角形是等腰直角三角形.這樣的三角形最多能畫_______個.【答案】3【解析】2.如圖,在平面直角坐標系中,矩形OABC的頂點A、B的坐標分別為A(6,0)、B(6,4),D是BC的中點,動點P從O點出發(fā),以每秒1個單位長度的速度,沿著OA→AB→BD運動,設(shè)點P運動的時間為f秒(0<t<13).(1)寫出△POD的面積S與t之間的函數(shù)關(guān)系式,并求出△POD的面積等于9時點P的坐標.(2)當(dāng)點P在OA上運動時,連接CP.問:是否存在某一時刻t,當(dāng)CP繞點P旋轉(zhuǎn)時,點C能恰好落到AB的中點處?若存在,請求出t的值;若不存在,請說明理由.【答案】(1)(,0)或(6,2)(2)存在這樣的時刻t=2,當(dāng)CP繞點P旋轉(zhuǎn)時,點C能恰好落在AB的中點【解析】課程小結(jié)1.2.3.課后作業(yè)【基礎(chǔ)】1.如圖,由4個小正方形組成的田字格中,△ABC的頂點都是小正方形的頂點.在田字格上畫與△ABC成軸對稱的三角形,且頂點都是小正方形的頂點,則這樣的三角形(不包含△ABC本身)共有().A.1個 B.2個C.3個 D.4個【答案】C【解析】2.如圖,在△ABC中,AB=AC,∠A=36°,BD、CE分別是△ABC,△BCD的角平分線,則圖中的等腰三角形有()A.5個 B.4個C.3個 D.2個【答案】A【解析】3.如圖,一輛汽車在直線形公路AB由A向B行駛,M、N分別是位于公路AB兩側(cè)的村莊.(1)設(shè)汽車行駛到公路徹上點P的位置時,距離村莊M最近,行駛到點Q的位置時,距離村莊N最近,請在公路AB上分別作出P、Q的位置;(不寫作法,保留作圖痕跡)(2)當(dāng)汽車從A出發(fā)向B行駛時,在公路AB的哪一段上距離M、N兩村都越來越近?在哪一段上距離村莊N越來越近,而距離村莊M越來越遠?在哪一段上距離M、N兩村都越來越遠?(分別用文字表述你的結(jié)論)(3)在公路AB上是否存在這樣一點H,汽車行駛到該點時,與村莊M、N的距離之和最短?如果存在,請在圖中AB上作出此點;如果不存在,請說明理由.(不寫作法,保留作圖痕跡)【答案】(1)略(2)APPQBQ(3)【解析】4.已知直線及其兩側(cè)兩點A、B,如圖.(1)在直線上求一點P,使PA=PB;(2)在直線上求一點Q,使平分∠AQB.(以上兩小題保留作圖痕跡,標出必要的字母,不要求寫作法。12分)【鞏固】1.在梯形ABCD中,B=90°,AB14cm,AD=18cm,BC=21cm,點P從點A開始沿邊AD向點D以1cm/s的速度移動,點Q從點C開始沿邊CB向點B以2cm/s的速度移動,如果點P、Q分別從兩點同時出發(fā),是否存在一個時間t,使梯形PBQD是等腰梯形?【答案】1s【解析】作PEBC,DFBC,垂足分別為E、F,BE=AP=t,QF=CF-CQ=(21-18)-2t=3-2t,當(dāng)BE=QF時,即t=3-2t,t=1s時,梯形PBQD是等腰梯形.2.如圖,在梯形ABCD中,AD∥BC,E是BC上的一點,且CE=8,BC=12,CD=,∠C=30°,∠B=60°.點P是線段BC邊上一動點(包括B、C兩點),設(shè)PB的長是x.當(dāng)x為何值時,以點P、A、D、E為頂點的四邊形為直角梯形.()A.2B.6C.2或6D.

或【答案】C【解析】過點D作DF⊥BC于點F.

在Rt△DFC中,∠C=30°,,

∴,

∴.

在Rt△DFE中,,

∴∠DEF=60°,∠EDF=30°,DE=4,

∴AB∥DE,

則四邊形ABED是平行四邊形.

∵BE=DE=4,

∴AB=BE=ED=DA=4.

①當(dāng)四邊形APED是直角梯形時,△APB是直角三角形,

在Rt△APB中,∠B=60°,AB=4,則BP=2;

②當(dāng)四邊形AEPD是直角梯形時,△DPE是直角三角形(此時點P與點F重合),則BP=6.

∴當(dāng)PB為2或6時,以點P,A,D,E為頂點的四邊形為直角梯形.3.如圖,在長方形ABCD中,AB=4,AD=10,點Q是BC的中點,點P在AD邊上運動,若△BPQ是腰長為5的等腰三角形,則滿足題意的點P有(

)個【答案】4【解析】四邊形ABCD為矩形,且,,

當(dāng)時,過P作,交BQ于點M,如圖1,

則,且四邊形ABMP為矩形,

,

當(dāng)時,則,在中,,由勾股定理可求得,

當(dāng)時,以點Q為圓心,BQ為半徑作圓,于AD交于R、S兩點,如圖2,

過Q作,交RS于點N,則可知,

在中,可求得,

則,,

即R、S為滿足條件的P點的位置,

或8,

綜上可知AP為2或2.5或3或8,4.圖,邊長為6的正方形ABCD內(nèi)部有一點P,BP=4,∠PBC=60°,點Q為正方形邊上一動點,且△PBQ是等腰三角形,則符合條件的Q點有____個.

【答案】5【解析】5.如圖,在四邊形中,,,,,,點從點出發(fā)以的速度沿運動,點從點出發(fā)的同時點從點出發(fā),以的速度向點運動,當(dāng)點到達點時,點也停止運動。設(shè)點,運動的時間為秒。(1)從運動開始,當(dāng)取何值時,?(2)從運動開始,當(dāng)取何值時,為直角三角形?【答案】【解析】(1)當(dāng)時,因為,,所以四邊形為平行四邊形,故,即,解得。所以當(dāng)時,。(2)如圖所示,過點作于。因為,所以四邊形為矩形,故,。①

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論