版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
吉林省延邊市白山一中2026屆高二數(shù)學第一學期期末質量檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線y2=4x的焦點為F,定點,M為拋物線上一點,則|MA|+|MF|的最小值為()A.3 B.4C.5 D.62.中國剪紙是一種用剪刀或刻刀在紙上剪刻花紋,用于裝點生活或配合其他民俗活動的民間藝術.如圖所示的圓形剪紙中,正六邊形的所有頂點都在該圓上,若在該圓形剪紙的內部投擲一點,則該點恰好落在正六邊形內部的概率為()A. B.C. D.3.圓上到直線的距離為的點共有A.個 B.個C.個 D.個4.中國古代數(shù)學著作《算法統(tǒng)宗》中有這樣一個問題:“三百七十八里關,初行健步不為難,次日腳痛減一半,六朝才得到其關,要見次日行里數(shù),請公仔細算相還.”其意思為:有一個人走378里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,走了6天后到達目的地,請問第二天走了()A.192
里 B.96
里C.48
里 D.24
里5.某中學的校友會為感謝學校的教育之恩,準備在學校修建一座四角攢尖的思源亭如圖它的上半部分的輪廓可近似看作一個正四棱錐,已知此正四棱錐的側面與底面所成的二面角為30°,側棱長為米,則以下說法不正確()A.底面邊長為6米 B.體積為立方米C.側面積為平方米 D.側棱與底面所成角的正弦值為6.設變量滿足約束條件,則的最大值為()A.0 B.C.3 D.47.已知動點在直線上,過點作圓的切線,切點為,則線段的長度的最小值為()A. B.4C. D.8.有3個興趣小組,甲、乙兩位同學各自參加其中一個小組,每位同學參加各個小組的可能性相同,則這兩位同學參加同一個興趣小組的概率為A. B.C. D.9.數(shù)列的一個通項公式為()A. B.C. D.10.雙曲線的焦距是()A.4 B.C.8 D.11.已知直線和互相垂直,則實數(shù)的值為()A. B.C.或 D.12.已知等比數(shù)列各項均為正數(shù),且,,成等差數(shù)列,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.過點作圓的切線l,直線與l平行,則直線l過定點_________,與l間的距離為____________14.若直線的方向向量為,平面的一個法向量為,則直線與平面所成角的正弦值為______.15.已知等差數(shù)列的前n項和為,,則___________.16.已知點P是拋物線上一個動點,則點P到點M(0,2)的距離與點P到該拋物線準線的距離之和的最小值為______________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)小張在2020年初向建行貸款50萬元先購房,銀行貸款的年利率為4%,要求從貸款開始到2030年要分10年還清,每年年底等額歸還且每年1次,每年至少要還多少錢呢(保留兩位小數(shù))?(提示:(1+4%)10≈1.48)18.(12分)已知直線過點(1)若直線與直線垂直,求直線的方程;(2)若直線在兩坐標軸的截距相等,求直線的方程19.(12分)已知橢圓C:(a>b>0)的離心率e為,點在橢圓上(1)求橢圓C的方程;(2)若A、B為橢圓的左右頂點,過點(1,0)的直線交橢圓于M、N兩點,設直線AM、BN的斜率分別為,求證為定值20.(12分)已知函數(shù).(1)討論的單調性;(2)任意,恒成立,求的取值范圍.21.(12分)已知函數(shù),.(1)若,求曲線在點處的切線方程;(2)若函數(shù)在上是減函數(shù),求實數(shù)的取值范圍.22.(10分)已知數(shù)列滿足,.(1)求證:數(shù)列是等比數(shù)列;(2)求數(shù)列的通項公式及前項的和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】作出圖象,過點M作準線的垂線,垂足為H,結合圖形可得當且僅當三點M,A,H共線時|MA|+|MH|最小,求解即可【詳解】過點M作準線的垂線,垂足為H,由拋物線的定義可知|MF|=|MH|,則問題轉化為|MA|+|MH|的最小值,結合圖形可得當且僅當三點M,A,H共線時|MA|+|MH|最小,其最小值為.故選:B2、D【解析】設圓的半徑,求出圓的面積與正六邊形的面積,再根據(jù)幾何概型的概率公式計算可得;【詳解】解:設圓的半徑,則,則,所以,所以在該圓形剪紙的內部投擲一點,則該點恰好落在正六邊形內部的概率;故選:D3、C【解析】求出圓的圓心和半徑,比較圓心到直線的距離和圓的半徑的關系即可得解.【詳解】圓可變?yōu)椋瑘A心為,半徑為,圓心到直線的距離,圓上到直線的距離為的點共有個.故選:C.【點睛】本題考查了圓與直線的位置關系,考查了學生合理轉化的能力,屬于基礎題.4、B【解析】由題可得此人每天走的步數(shù)等比數(shù)列,根據(jù)求和公式求出首項可得.【詳解】由題意可知此人每天走的步數(shù)構成為公比的等比數(shù)列,由題意和等比數(shù)列的求和公式可得,解得,第此人第二天走里.故選:B5、D【解析】連接底面正方形的對角線交于點,連接,則為該正四棱錐的高,即平面,取的中點,連接,則的大小為側面與底面所成,設正方形的邊長為,求出該正四棱錐的底面邊長,斜高和高,然后對選項進行逐一判斷即可.【詳解】連接底面正方形的對角線交于點,連接則為該正四棱錐的高,即平面取的中點,連接,由正四棱錐的性質,可得由分別為的中點,所以,則所以為二面角的平面角,由條件可得設正方形的邊長為,則,又則,解得故選項A正確.所以,則該正四棱錐的體積為,故選項B正確.該正四棱錐的側面積為,故選項C正確.由題意為側棱與底面所成角,則,故選項D不正確.故選:D6、A【解析】先畫出約束條件所表示的平面區(qū)域,然后根據(jù)目標函數(shù)的幾何意義,即可求出目標函數(shù)的最大值.【詳解】解:滿足約束條件的可行域如下圖所示:由,可得,因為目標函數(shù),即,表示斜率為,截距為的直線,由圖可知,當直線經(jīng)過時截距取得最小值,即取得最大值,所以的最大值為,故選:A.7、A【解析】求出的最小值,由切線長公式可結論【詳解】解:由,得最小時,最小,而,所以故選:A.8、A【解析】每個同學參加的情形都有3種,故兩個同學參加一組的情形有9種,而參加同一組的情形只有3種,所求的概率為p=選A9、A【解析】根據(jù)規(guī)律,總結通項公式,即可得答案.【詳解】根據(jù)規(guī)律可知數(shù)列的前三項為,所以該數(shù)列一個通項公式為故選:A10、C【解析】根據(jù),先求半焦距,再求焦距即可.【詳解】解:由題意可得,,∴,故選:C【點睛】考查求雙曲線的焦距,基礎題.11、B【解析】由兩直線垂直可得出關于實數(shù)的等式,求解即可.【詳解】由已知可得,解得.故選:B.12、A【解析】結合等差數(shù)列的性質求得公比,然后由等比數(shù)列的性質得結論【詳解】設的公比為,因為,,成等差數(shù)列,所以,即,,或(舍去,因為數(shù)列各項為正)所以故選:A二、填空題:本題共4小題,每小題5分,共20分。13、①.②.##2.4【解析】利用直線與平行,結合切線的性質求出切線的方程,即可確定定點坐標,再利用兩條平行線間的距離公式求兩線距離.【詳解】由題意,直線斜率,設直線的方程為,即∴直線l過定點,由與圓相切,得,解得,∴的方程為,的方程為,則兩直線間的距離為故答案為:;.14、【解析】根據(jù)空間向量夾角公式進行求解即可.【詳解】設與的夾角為,直線與平面所成角為,所以,故答案為:15、36【解析】根據(jù)等比數(shù)列下標和性質得到,再根據(jù)等差數(shù)列前項和公式計算可得;【詳解】解:因,所以,所以;故答案為:16、【解析】由拋物線的定義得:,所以,當三點共線時,最小可得答案.【詳解】如圖所示:,由拋物線的定義得:,所以,由圖象知:當三點共線時,最小,.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、每年至少要還6.17萬元.【解析】根據(jù)貸款總額和還款總額相等,50(1+4%)10=x·(1+4%)9+x·(1+4%)8+…+x,求解即可.【詳解】50萬元10年產(chǎn)生本息和與每年還x萬元的本息和相等,故有購房款50萬元十年的本息和:50(1+4%)10,每年還x萬元的本息和:x·(1+4%)9+x·(1+4%)8+…+x=,從而有50(1+4%)10=,解得x≈6.17,即每年至少要還6.17萬元.18、(1)(2)或【解析】(1)由兩條直線垂直可設直線的方程為,將點的坐標代入計算即可;(2)當直線過原點時,根據(jù)直線的點斜式方程即可得出結果;當直線不過原點時可設直線的方程為,將點的坐標代入計算即可.【小問1詳解】解:因為直線與直線垂直所以,設直線的方程為,因為直線過點,所以,解得,所以直線的方程為【小問2詳解】解:當直線過原點時,斜率為,由點斜式求得直線的方程是,即當直線不過原點時,設直線的方程為,把點代入方程得,所以直線的方程是綜上,所求直線的方程為或19、(1);(2)證明見解析【解析】(1)根據(jù)題意列出關于a、b、c的方程組求出a、b、c即可得橢圓方程;(2)設直線的方程為,,,,,聯(lián)立直線方程利用韋達定理即可求為定值【小問1詳解】;【小問2詳解】由橢圓方程可知,,,設直線的方程為,,,,,聯(lián)立得,∴,,則,∵,,∴,把及代入可得:﹒20、(1)的遞增區(qū)間為,遞減區(qū)間為(2)【解析】(1)先求出函數(shù)的導數(shù),令、解出對應的解集,結合定義域即可得到函數(shù)的單調區(qū)間;(2)將不等式轉化為,令,利用導數(shù)討論函數(shù)分別在、時的單調性,進而求出函數(shù)的最值,即可得出答案.【小問1詳解】函數(shù)的定義域為,又當時,,當時,故的遞增區(qū)間為,遞減區(qū)間為.【小問2詳解】,即,令,有,,若,在上恒成立.則在上為減函數(shù),所以有若,由,可得,則在上增,所以在上存在使得,與題意不符合綜上所述,.21、(1).(2).【解析】分析:(1)由和可由點斜式得切線方程;(2)由函數(shù)在上是減函數(shù),可得在上恒成立,,由二次函數(shù)的性質可得解.詳解:(1)當時,所以,所以曲線在點處的切線方程為.(2)因為函數(shù)在上是減函數(shù),所以在上恒成立.做法一:令,有,得故.實數(shù)的取值范圍為做法二:即在上恒成立,則在上恒成立,令,顯然在上單調遞減,則,得實數(shù)的取值范圍為點睛:導數(shù)問題經(jīng)常會遇見恒成立的問題:(1)根據(jù)參變分離,轉化為不含參數(shù)的函數(shù)的最值問題;(2)若就可討論參數(shù)不同取值
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 信息技術(信創(chuàng)版)(微課版)課件全套 徐麗 項目1-6 計算機基礎 - 其他常用軟件的應用-1
- 十八項醫(yī)療核心制度解讀
- 2026年劇本殺運營公司員工晉升與調崗管理制度
- 2026年及未來5年中國金融軟件行業(yè)市場競爭格局及投資前景展望報告
- 2025年社區(qū)智慧健康管理服務平臺技術創(chuàng)新與市場前景研究報告
- 體檢科各檢查室制度
- 產(chǎn)科護理與跨學科合作
- 人事四項制度
- 機動車檢測站培訓內容課件
- 中國科學院空間應用工程與技術中心2025年校園招聘備考題庫及1套完整答案詳解
- 江蘇省淮安市2024-2025學年七年級下學期期末歷史試題(含答案)
- 醫(yī)療器械胰島素泵市場可行性分析報告
- 地鐵施工現(xiàn)場防臺風措施
- 種植業(yè)合作社賬務處理
- 【麗江玉龍旅游薪酬制度的創(chuàng)新研究6100字】
- 公司兩權分離管理制度
- 車輛叉車日常檢查記錄表
- 廣東高校畢業(yè)生“三支一扶”計劃招募考試真題2024
- 膠帶機硫化工藝.課件
- 種雞免疫工作總結
- 河南省商丘市柘城縣2024-2025學年八年級上學期期末數(shù)學試題(含答案)
評論
0/150
提交評論