版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
湖北省鄖陽中學(xué)2026屆數(shù)學(xué)高二上期末聯(lián)考試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知為等差數(shù)列,為其前n項和,,則下列和與公差無關(guān)的是()A. B.C. D.2.若雙曲線經(jīng)過點,且它的兩條漸近線方程是,則雙曲線的方程是()A. B.C. D.3.雙曲線C:的右焦點為F,過點F作雙曲線C的兩條漸近線的垂線,垂足分別為H1,H2.若,則雙曲線C的離心率為()A. B.C. D.24.命題“?x∈R,|x|+x2≥0”的否定是()A.?x∈R,|x|+x2<0 B.?x∈R,|x|+x2≤0C.?x0∈R,|x0|+<0 D.?x0∈R,|x0|+≥05.已知,則下列說法中一定正確的是()A. B.C. D.6.某校為了解學(xué)生學(xué)習(xí)的情況,采用分層抽樣的方法從高一人、高二人、高三人中,抽取人進(jìn)行問卷調(diào)查.已知高二被抽取的人數(shù)為人,那么高三被抽取的人數(shù)為()A. B.C. D.7.已知拋物線的焦點為F,且點F與圓上點的距離的最大值為6,則拋物線的準(zhǔn)線方程為()A. B.C. D.8.對于圓上任意一點的值與x,y無關(guān),有下列結(jié)論:①當(dāng)時,r有最大值1;②在r取最大值時,則點的軌跡是一條直線;③當(dāng)時,則.其中正確的個數(shù)是()A.3 B.2C.1 D.09.若函數(shù)有兩個不同的極值點,則實數(shù)的取值范圍是()A. B.C. D.10.已知各項均為正數(shù)的等比數(shù)列滿足,若存在兩項,使得,則的最小值為()A.4 B.C. D.911.雙曲線的漸近線的斜率是()A.1 B.C. D.12.若構(gòu)成空間的一個基底,則下列向量能構(gòu)成空間的一個基底的是()A.,, B.,,C.,, D.,,二、填空題:本題共4小題,每小題5分,共20分。13.橢圓的右焦點為,過原點的直線與橢圓交于兩點、,則的面積的最大值為___________.14.已知函數(shù),是的導(dǎo)函數(shù),則______15.已知某次數(shù)學(xué)期末試卷中有8道4選1的單選題16.已知數(shù)列的前項和.則數(shù)列的通項公式為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知是函數(shù)的一個極值點.(1)求實數(shù)的值;(2)求函數(shù)在區(qū)間上的最大值和最小值.18.(12分)在△ABC中,角A,B,C所對的邊為a,b,c,其中,,且(1)求角B的值;(2)若,判斷△ABC的形狀19.(12分)已知橢圓的離心率為,點在橢圓C上.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)已知直線與橢圓C交于P,Q兩點,點M是線段PQ的中點,直線過點M,且與直線l垂直.記直線與y軸的交點為N,求的取值范圍.20.(12分)已知數(shù)列滿足(1)求數(shù)列的通項公式;(2)是否存在正實數(shù)a,使得不等式對一切正整數(shù)n都成立?若存在,求出a的取值范圍;若不存在,請說明理由.21.(12分)已知圓C的圓心在y軸上,且過點,(1)求圓C的方程;(2)已知圓C上存在點M,使得三角形MAB的面積為,求點M的坐標(biāo)22.(10分)如圖,已知拋物線的焦點為,點是軸上一定點,過的直線交與兩點.(1)若過的直線交拋物線于,證明縱坐標(biāo)之積為定值;(2)若直線分別交拋物線于另一點,連接交軸于點.證明:成等比數(shù)列.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】依題意根據(jù)等差數(shù)列的通項公式可得,再根據(jù)等差數(shù)列前項和公式計算可得;【詳解】解:因為,所以,即,所以,,,,故選:C2、A【解析】根據(jù)雙曲線漸近線方程設(shè)出方程,再由其過的點即可求解.【詳解】漸近線方程是,設(shè)雙曲線方程為,又因為雙曲線經(jīng)過點,所以有,所以雙曲線方程為,化為標(biāo)準(zhǔn)方程為.故選:A3、D【解析】將條件轉(zhuǎn)化為該雙曲線的一條漸近線的傾斜角為,可得,由離心率公式即可得解.【詳解】由題意,(為坐標(biāo)原點),所以該雙曲線的一條漸近線的傾斜角為,所以,即,所以離心率.故選:D.4、C【解析】利用全稱命題的否定可得出結(jié)論.【詳解】由全稱命題的否定可知,命題“,”的否定是“,”.故選:C.5、B【解析】AD選項,舉出反例即可;BC選項,利用不等式的基本性質(zhì)進(jìn)行判斷.【詳解】當(dāng),時,滿足,此時,故A錯誤;因,所以,,,B正確;因為,所以,,故,C錯誤;當(dāng),時,滿足,,,所以,D錯誤.故選:B6、C【解析】利用分層抽樣求出的值,進(jìn)而可求得高三被抽取的人數(shù).【詳解】由分層抽樣可得,可得,設(shè)高三所抽取的人數(shù)為,則,解得.故選:C.7、D【解析】先求得拋物線的焦點坐標(biāo),再根據(jù)點F與圓上點的距離的最大值為6求解.【詳解】因為拋物線的焦點為F,且點F與圓上點的距離的最大值為6,所以,解得,所以拋物線準(zhǔn)線方程為,故選:D8、B【解析】可以看作點到直線與直線距離之和的倍,的取值與,無關(guān),這個距離之和與點在圓上的位置無關(guān),圓在兩直線內(nèi)部,則,的距離為,則,,對于①,當(dāng)時,r有最大值1,得出結(jié)論;對于②在r取最大值時,則點的軌跡是一條平行與,的直線,得出結(jié)論;對于③當(dāng)時,則得出結(jié)論.【詳解】設(shè),故可以看作點到直線與直線距離之和的倍,的取值與,無關(guān),這個距離之和與點在圓上的位置無關(guān),可知直線平移時,點與直線,的距離之和均為,的距離,即此時圓在兩直線內(nèi)部,,的距離為,則,對于①,當(dāng)時,r有最大值1,正確;對于②在r取最大值時,則點的軌跡是一條平行與,的直線,正確;對于③當(dāng)時,則即,解得或,故錯誤.故正確結(jié)論有2個,故選:B.9、D【解析】計算,然后等價于在(0,+∞)由2個不同的實數(shù)根,然后計算即可.【詳解】的定義域是(0,+∞),,若函數(shù)有兩個不同的極值點,則在(0,+∞)由2個不同的實數(shù)根,故,解得:,故選:D.【點睛】本題考查根據(jù)函數(shù)極值點個數(shù)求參,考查計算能力以及思維轉(zhuǎn)變能力,屬基礎(chǔ)題.10、C【解析】由求得,代入求得,利用基本不等式求出它的最小值【詳解】因為各項均為正數(shù)的等比數(shù)列滿足,可得,即解得或(舍去)∵,,∴=當(dāng)且僅當(dāng),即m=2,n=4時,等號成立故的最小值等于.故選:C【點睛】方法點睛:本題主要考查等比數(shù)列的通項公式和基本不等式的應(yīng)用,解題的關(guān)鍵是常量代換的技巧,所謂常量代換,就是把一個常數(shù)用代數(shù)式來代替,如,再把常數(shù)6代換成已知中的m+n,即.常量代換是基本不等式里常用的一個技巧,可以優(yōu)化解題,提高解題效率.11、B【解析】由雙曲線的漸近線方程為:,化簡即可得到答案.【詳解】雙曲線的漸近線方程為:,即,漸近線的斜率是.故選:B12、B【解析】由空間向量內(nèi)容知,構(gòu)成基底的三個向量不共面,對選項逐一分析【詳解】對于A:,因此A不滿足題意;對于B:根據(jù)題意知道,,不共面,而和顯然位于向量和向量所成平面內(nèi),與向量不共面,因此B正確;對于C:,故C不滿足題意;對于D:顯然有,選項D不滿足題意.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】分析可知點、關(guān)于原點對稱,可知當(dāng)、為橢圓短軸的端點時,的面積取得最大值.【詳解】橢圓中,,,則,則,由題意可知,、關(guān)于原點對稱,當(dāng)、為橢圓短軸的端點時,的面積取得最大值,且最大值為.故答案為:.14、2【解析】根據(jù)基本初等函數(shù)的導(dǎo)數(shù)公式及導(dǎo)數(shù)的加法法則,對求導(dǎo),再求即可.【詳解】由題設(shè),,所以.故答案為:15、##0.84375【解析】合理設(shè)出事件,利用全概率公式進(jìn)行求解.【詳解】設(shè)小王從這8題中任選1題,且作對為事件A,選到能完整做對的5道題為事件B,選到有思路的兩道題為事件C,選到完全沒有思路為事件D,則,,,由全概率公式可得:PA=PB故答案為:16、【解析】根據(jù)公式求解即可.【詳解】解:當(dāng)時,當(dāng)時,因為也適合此等式,所以.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)3(2),【解析】(1)先求出函數(shù)的導(dǎo)數(shù),根據(jù)極值點可得導(dǎo)數(shù)的零點,從而可求實數(shù)的值;(2)由(1)可得函數(shù)的單調(diào)性,從而可求最值.【小問1詳解】,是的一個極值點,.,,此時,令,解劇或,令,解得,故為的極值點,故.【小問2詳解】由(1)可得在上單調(diào)遞增,在上單調(diào)遞減,故在上為增函數(shù),在上為減函數(shù),.又18、(1)(2)等邊三角形【解析】(1)把化為,然后由正弦定理化邊為角,利用兩角和的正弦公式、誘導(dǎo)公式可求得;(2)由余弦定理及三角形面積公式可得,從而得出三角形為等邊三角形【小問1詳解】∵,∴由正弦定理得,∵,∴,∴,又,所以,可得;【小問2詳解】由(1)知余弦定理,①,②由①②可得:,又,所以,所以該三角形為等邊三角形19、(1)(2)【解析】(1)求出后可得橢圓的方程.(2)聯(lián)立直線的方程和橢圓方程,消去后利用韋達(dá)定理可用表示,利用換元法和二次函數(shù)的性質(zhì)可求的取值范圍.小問1詳解】由題意可得,解得,.故橢圓C的標(biāo)準(zhǔn)方程為.【小問2詳解】設(shè),,.聯(lián)立,整理得,則,解得,從而,.因為M是線段PQ的中點,所以,則,故.直線的方程為,即.令,得,則,所以.設(shè),則,故.因為,所以,所以.20、(1)(2)【解析】(1)通過構(gòu)造新數(shù)列求解;(2)由(1)得,再研究其單調(diào)性,從而得到最值,再解不等式即可求解.【小問1詳解】由,假設(shè)其變形為,則有,所以,又.所以,即.【小問2詳解】由(1),所以,令,則,所以,所以是遞減數(shù)列,所以,所以使得不等式對一切正整數(shù)n都成立,則,即,因為為正實數(shù),所以.21、(1);(2)或.【解析】(1)兩點式求AB所在直線的斜率,結(jié)合點坐標(biāo)求AB的垂直平分線,根據(jù)已知確定圓心、半徑即可得圓C的方程;(2)求AB所在直線方程,幾何關(guān)系求弦長,由三角形面積求點線距離,設(shè)M所在直線為,由點線距離公式列方程求參數(shù),進(jìn)而聯(lián)立直線與圓C求M的坐標(biāo)【小問1詳解】由題意知,AB所在直線的斜率為,又,中點為,所以線段AB的垂直平分線為,即,聯(lián)立,得,半徑,所以圓C的方程為.【小問2詳解】由題意,AB所在直線方程為,即,圓心到直線AB的距離為,故,因為三角形MAB的面積為,則點M到直線AB的距離為,設(shè)點M所在直線方程為,所以,所以或
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年無人機(jī)地面站考試題庫及答案詳解
- 電影城2025年度工作總結(jié)
- 2025軟件測試招聘筆試題及答案
- 屋面保溫層技術(shù)交底
- 建設(shè)工程施工合同糾紛要素式起訴狀模板維權(quán)流程詳細(xì)指引
- 爵士介紹英文
- 2026校招:重慶鋼鐵集團(tuán)試題及答案
- 2026 年無財產(chǎn)離婚協(xié)議書權(quán)威版
- 2026 年合規(guī)化離婚協(xié)議書官方模板
- 2026年微博營銷指南
- 浙江省臺金七校聯(lián)盟2025-2026學(xué)年高一上學(xué)期11月期中聯(lián)考語文試題含答案
- 兒科皮膚病科普
- 汽車網(wǎng)絡(luò)與新媒體營銷 教案 項目5-8 汽車直播營銷-汽車網(wǎng)絡(luò)與新媒體營銷綜合技能
- 2025年熱科院筆試試題及答案
- T-CSF 0114-2025 城市綠地植物物種多樣性評價規(guī)范
- 造價咨詢方案的指導(dǎo)思想
- 印刷品采購合同協(xié)議書
- 郯城一中自主招生考試試題及答案
- 員工數(shù)據(jù)安全培訓(xùn)
- 人工智能技術(shù)在仲裁中的應(yīng)用與挑戰(zhàn)-洞察及研究
- 施工機(jī)具安全檢查記錄表
評論
0/150
提交評論