陜西省西安市西電附中2026屆高二數學第一學期期末監(jiān)測模擬試題含解析_第1頁
陜西省西安市西電附中2026屆高二數學第一學期期末監(jiān)測模擬試題含解析_第2頁
陜西省西安市西電附中2026屆高二數學第一學期期末監(jiān)測模擬試題含解析_第3頁
陜西省西安市西電附中2026屆高二數學第一學期期末監(jiān)測模擬試題含解析_第4頁
陜西省西安市西電附中2026屆高二數學第一學期期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

陜西省西安市西電附中2026屆高二數學第一學期期末監(jiān)測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.直線被圓截得的弦長為()A.1 B.C.2 D.32.下列說法中正確的是A.命題“若,則”的逆命題為真命題B.若為假命題,則均為假命題C.若為假命題,則為真命題D.命題“若兩個平面向量滿足,則不共線”的否命題是真命題.3.設a,b,c非零實數,且,則()A. B.C. D.4.雙曲線的光學性質為:如圖①,從雙曲線右焦點發(fā)出的光線經雙曲線鏡面反射,反射光線的反向延長線經過左焦點.我國首先研制成功的“雙曲線新聞燈”,就是利用了雙曲線的這個光學性質.某“雙曲線新聞燈”的軸截面是雙曲線的一部分,如圖②,其方程為,為其左、右焦點,若從右焦點發(fā)出的光線經雙曲線上的點和點反射后,滿足,,則該雙曲線的離心率為()A. B.C. D.5.在平面直角坐標系中,已知點,,,,直線AP,BP相交于點P,且它們斜率之積是.當時,的最小值為()A. B.C. D.6.已知雙曲線的左、右焦點分別為,,為坐標原點,為雙曲線在第一象限上的點,直線,分別交雙曲線的左,右支于另一點,,若,且,則雙曲線的離心率為()A. B.3C.2 D.7.是等差數列,且,,則的值()A. B.C. D.8.已知數列是等比數列,且,則的值為()A.3 B.6C.9 D.369.已知四面體,所有棱長均為2,點E,F分別為棱AB,CD的中點,則()A.1 B.2C.-1 D.-210.南宋數學家楊輝在《詳解九章算術法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數列與一般的等差數列不同,前后兩項之差并不相等,但是逐項差數之差或者高次成等差數列.如數列1,3,6,10,前后兩項之差組成新數列2,3,4,新數列2,3,4為等差數列,這樣的數列稱為二階等差數列.現有二階等差數列,其前7項分別為2,3,5,8,12,17,23,則該數列的第31項為()A.336 B.467C.483 D.60111.已知點在拋物線的準線上,則該拋物線的焦點坐標是()A. B.C. D.12.已知對任意實數,有,且時,則時A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.直線與圓相交于兩點M,N,若滿足,則________14.已知數列為嚴格遞增數列,且對任意,都有且.若對任意恒成立,則________15.從雙曲線上一點作軸的垂線,垂足為,則線段中點的軌跡方程為___________.16.如圖三角形數陣:132456109871112131415……按照自上而下,自左而右的順序,位于第行的第列,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知,,分別是銳角內角,,的對邊,,.(1)求的值;(2)若的面積為,求的值.18.(12分)已知拋物線上一點到拋物線焦點的距離為,點關于坐標原點對稱,過點作軸的垂線,為垂足,直線與拋物線交于兩點.(1)求拋物線的方程;(2)設直線與軸交點分別為,求的值;(3)若,求.19.(12分)已知數列的前項和為,且.數列是等比數列,,(1)求,的通項公式;(2)求數列的前項和20.(12分)已知函數.(1)求的單調遞增區(qū)間;(2)求在的最大值.21.(12分)如圖所示,在空間四邊形中,,分別為,的中點,,分別在,上,且.求證:(1)、、、四點共面;(2)與的交點在直線上22.(10分)如圖,在三棱柱中,平面ABC,,,,點D,E分別在棱和棱上,且,,M為棱中點(1)求證:;(2)求直線AB與平面所成角的正弦值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】利用直線和圓相交所得的弦長公式直接計算即可.【詳解】由題意可得圓的圓心為,半徑,則圓心到直線的距離,所以由直線和圓相交所得的弦長公式可得弦長為:.故選:C.2、D【解析】A中,利用四種命題的的真假判斷即可;B、C中,命題“”為假命題時,、至少有一個為假命題;D中,寫出該命題的否命題,再判斷它的真假性【詳解】對于A,命題“若,則”的逆命題是:若,則;因為也成立.所以A不正確;對于B,命題“”為假命題時,、至少有一個為假命題,所以B錯誤;C錯誤;對于D,“平面向量滿足”,則不共線的否命題是,若“平面向量滿足”,則共線;由知:,一定有,,所以共線,D正確.故選:D.【點睛】本題考查了命題的真假性判斷問題,也考查了推理與判斷能力,是基礎題3、C【解析】對于A、B、D:取特殊值否定結論;對于C:利用作差法證明.【詳解】對于A:取符合已知條件,但是不成立.故A錯誤;對于B:取符合已知條件,但是,所以不成立.故B錯誤;對于C:因為,所以.故C正確;對于D:取符合已知條件,但是,所以不成立.故D錯誤;故選:C.4、C【解析】連接,已知條件為,,設,由雙曲線定義表示出,用已知正切值求出,再由雙曲線定義得,這樣可由勾股定理求出(用表示),然后在中,應用勾股定理得出的關系,求得離心率【詳解】易知共線,共線,如圖,設,,則,由得,,又,所以,,所以,所以,由得,因為,故解得,則,在中,,即,所以故選:C5、A【解析】設出點坐標,求得、所在直線的斜率,由斜率之積是列式整理即可得到點的軌跡方程,設,根據雙曲線的定義,從而求出的最小值;【詳解】解:設點坐標為,則直線的斜率;直線的斜率由已知有,化簡得點的軌跡方程為又,所以點的軌跡方程為,即點的軌跡為以、為頂點的雙曲線的左支(除點),因為,設,由雙曲線的定義可知,所以,當且僅當、、三點共線時取得最小值,因為,所以,所以,即的最小值為;故選:A6、D【解析】由雙曲線的定義可設,,由平面幾何知識可得四邊形為平行四邊形,三角形,用余弦定理,可得,的方程,再由離心率公式可得所求值【詳解】由雙曲線的定義可得,由,可得,,結合雙曲線性質可以得到,而,結合四邊形對角線平分,可得四邊形為平行四邊形,結合,故,對三角形,用余弦定理,得到,結合,可得,,,代入上式子中,得到,即,結合離心率滿足,即可得出,故選:D【點睛】本題考查求雙曲線的離心率,熟記雙曲線的簡單性質即可,屬于常考題型.7、B【解析】根據等差數列的性質計算【詳解】因為是等差數列,所以,,也成等差數列,所以故選:B8、C【解析】應用等比中項的性質有,結合已知求值即可.【詳解】由等比數列的性質知:,,,所以,又,所以.故選:C9、D【解析】在四面體中,取定一組基底向量,表示出,,再借助空間向量數量積計算作答.【詳解】四面體所有棱長均為2,則向量不共面,兩兩夾角都為,則,因點E,F分別為棱AB,CD的中點,則,,,所以.故選:D10、B【解析】先由遞推關系利用累加法求出通項公式,直接帶入即可求得.【詳解】根據題意,數列2,3,5,8,12,17,23……滿足,,所以該數列的第31項為.故選:B11、C【解析】首先表示出拋物線的準線,根據點在拋物線的準線上,即可求出參數,即可求出拋物線的焦點.【詳解】解:拋物線的準線為因為在拋物線的準線上故其焦點為故選:【點睛】本題考查拋物線的簡單幾何性質,屬于基礎題.12、B【解析】,所以是奇函數,關于原點對稱,是偶函數,關于y軸對稱,時則都是增函數,由對稱性可知時遞增,遞減,所以考點:函數奇偶性單調性二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由點到直線的距離公式,結合已知可得圓心到直線的距離,再由圓的弦長公式可得,然后可解.【詳解】因為,所以,所以,圓心到直線的距離因為,所以,所以故答案為:14、66【解析】根據恒成立和嚴格遞增可得,然后利用遞推求出,的值,不難發(fā)現在此兩項之間的所有項為連續(xù)正整數,于是可得,,然后可解.【詳解】因為,且數列為嚴格遞增數列,所以或,若,則(矛盾),故由可得:,,,,,,,,,,,,,因,,,且數列為嚴格遞增數列,,所以,,所以,所以故答案為:6615、.【解析】根據題意,設,進而根據中點坐標公式及點P已知雙曲線上求得答案.【詳解】由題意,設,則,則,即,因為,則,即的軌跡方程為.16、【解析】由題意可知到第行結束一共有個數字,由此可知在第行;又由圖可知,奇數行從左到右是從小到大排列,偶數行從左到右是從大到小排列,第行個數字從大到小排列,由此可知在到數第列,據此即可求出,進而求出結果.【詳解】由圖可知,第1行有1個數字,第2行有2個數字,第2行有3個數字,……第行有個數字,由此規(guī)律可知,到第行結束一共有個數字;又當時,,所以第行結束一共有個數字;當時,,所以在第行,故;由圖可知,奇數行從左到右是從小到大排列,偶數行從左到右是從大到小排列,第行是偶數行,共個數字,從大到小排列,所以在倒數第列,所以,所以.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)4.【解析】(1)由正弦定理即可得答案.(2)根據題意得到,再由關于角的余弦定理和整理化簡得,再由的面積,即可求出的值.【小問1詳解】由及正弦定理可得.【小問2詳解】由銳角中得,根據余弦定理可得,代入得,整理得,即,解得,,解得.18、(1);(2);(3).【解析】(1)運用拋物線的定義進行求解即可;(2)設出直線的方程,與拋物線的方程聯立,可求得點和的縱坐標,結合直線點斜式方程、兩點間距離公式進行求解即可;(3)利用弦長公式求得,由兩點間距離公式求得和,再解方程即可.【小問1詳解】拋物線的準線方程為:,因為點到拋物線焦點的距離為,所以有;小問2詳解】由題意知,,,設,則,,,,所以直線的方程為,聯立,消去得,,解得,設,,,,不妨取,,直線的斜率為,其方程為,令,則,同理可得,所以,而,所以;【小問3詳解】,其中,,,因為,所以,化簡得,解得(舍負),即,所以【點睛】關鍵點睛:運用拋物線的定義、弦長公式進行求解是解題的關鍵.19、(1),(2)【解析】(1)利用求出通項公式,根據已知求出公比即可得出的通項公式;(2)利用錯位相減法可求解.【小問1詳解】因為數列的前項和為,且,當時,,當時,,滿足,所以,設等比數列的公比為,因為,,所以,解得,所以;【小問2詳解】因為,,則,兩式相減得,所以.20、(1)(2)【解析】(1)利用兩角和的余弦公式以及輔助角公式可得,再由正弦函數單調區(qū)間,整體代入即可求解.(2)根據三角函數的單調性即可求解.【小問1詳解】,,解得,所以函數的單調遞增區(qū)間為【小問2詳解】由(1),解得函數的單調遞減區(qū)間為,所以函數在上單調遞減,在上單調遞增,,,所以函數的最大值為.21、(1)證明見解析;(2)證明見解析【解析】(1)由平行關系轉化,可得,即可證明四點共面;(2)由條件證明與的交點既在平面上,又在平面上,即可證明.【詳解】證明(1)∵,∴∵,分別為,的中點,∴,∴,∴,,,四點共面(2)∵,不是,的中點,∴,且,故為梯形∴與必相交,設交點為,∴平面,平面,∴平面,且平面,∴,即與的交點在直線上22、(1)證明見解析;(2)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論