2026屆四川省雅安市雅安中學(xué)數(shù)學(xué)高二上期末綜合測試模擬試題含解析_第1頁
2026屆四川省雅安市雅安中學(xué)數(shù)學(xué)高二上期末綜合測試模擬試題含解析_第2頁
2026屆四川省雅安市雅安中學(xué)數(shù)學(xué)高二上期末綜合測試模擬試題含解析_第3頁
2026屆四川省雅安市雅安中學(xué)數(shù)學(xué)高二上期末綜合測試模擬試題含解析_第4頁
2026屆四川省雅安市雅安中學(xué)數(shù)學(xué)高二上期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2026屆四川省雅安市雅安中學(xué)數(shù)學(xué)高二上期末綜合測試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)滿足則的最大值為A. B.2C.4 D.162.已知的展開式中,各項系數(shù)的和與其各項二項式系數(shù)的和之比為,則()A.4 B.5C.6 D.73.已知圓柱的底面半徑是1,高是2,那么該圓柱的側(cè)面積是()A.2 B.C. D.4.某程序框圖如圖所示,該程序運行后輸出的k的值是A.3 B.4C.5 D.65.彬塔,又稱開元寺塔、彬縣塔,民間稱“雷峰塔”,位于陜西省彬縣城內(nèi)西南紫薇山下.某同學(xué)為測量彬塔的高度,選取了與塔底在同一水平面內(nèi)的兩個測量基點與,現(xiàn)測得,,,在點測得塔頂?shù)难鼋菫?0°,則塔高()A.30m B.C. D.6.已知橢圓的左、右焦點分別是,焦距,過點的直線與橢圓交于兩點,若,且,則橢圓C的方程為()A. B.C. D.7.將5名北京冬奧會志愿者分配到花樣滑冰、短道速滑、冰球和冰壺4個項目進(jìn)行培訓(xùn),每名志愿者只分配到1個項目,每個項目至少分配1名志愿者,則不同的分配方案共有()A.60種 B.120種C.240種 D.480種8.以軸為對稱軸,頂點為坐標(biāo)原點,焦點到準(zhǔn)線的距離為4的拋物線方程是()A. B.C.或 D.或9.已知雙曲線的離心率,點是拋物線上的一動點,到雙曲線的上焦點的距離與到直線的距離之和的最小值為,則該雙曲線的方程為A. B.C. D.10.圓心在x軸上且過點的圓與y軸相切,則該圓的方程是()A. B.C. D.11.拋物線的準(zhǔn)線方程是A.x=1 B.x=-1C. D.12.空間直角坐標(biāo)系中,已知則點關(guān)于平面的對稱點的坐標(biāo)為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知點和,M是橢圓上一動點,則的最大值為________.14.已知雙曲線,(,)的左右焦點分別為,過的直線與圓相切,與雙曲線在第四象限交于一點,且有軸,則直線的斜率是___________,雙曲線的漸近線方程為___________.15.已知,,若,則______16.過圓上一點的圓的切線的一般式方程為________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面ABCD為直角梯形,,平面ABCD,,.(1)求點B到平面PCD的距離;(2)求二面角的平面角的余弦值.18.(12分)已知的內(nèi)角的對邊分別為a,,若向量,且(1)求角的值;(2)已知的外接圓半徑為,求周長的最大值.19.(12分)在直三棱柱ABC﹣A1B1C1中,AB⊥AC,AB=AC=2,A1A=4,點D是BC的中點;(I)求異面直線A1B,AC1所成角的余弦值;(II)求直線AB1與平面C1AD所成角的正弦值20.(12分)已知圓C經(jīng)過坐標(biāo)原點O和點(4,0),且圓心在x軸上(1)求圓C的方程;(2)已知直線l:與圓C相交于A、B兩點,求所得弦長值21.(12分)如圖,在四棱錐P-ABCD中,底面四邊形ABCD為直角梯形,,,,O為BD的中點,,(1)證明:平面ABCD;(2)求平面PAD與平面PBC所成銳二面角的余弦值22.(10分)如圖1是直角梯形,以為折痕將折起,使點C到達(dá)的位置,且平面與平面垂直,如圖2(1)求異面直線與所成角的余弦值;(2)在棱上是否存在點P,使平面與平面的夾角為?若存在,則求三棱錐的體積,若不存在,則說明理由

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】可行域如圖,則直線過點A(0,1)取最大值2,則的最大值為4,選C.點睛:線性規(guī)劃的實質(zhì)是把代數(shù)問題幾何化,即數(shù)形結(jié)合的思想.需要注意的是:一,準(zhǔn)確無誤地作出可行域;二,畫目標(biāo)函數(shù)所對應(yīng)的直線時,要注意與約束條件中的直線的斜率進(jìn)行比較,避免出錯;三,一般情況下,目標(biāo)函數(shù)的最大或最小值會在可行域的端點或邊界上取得.2、C【解析】利用賦值法確定展開式中各項系數(shù)的和以及二項式系數(shù)的和,利用比值為,列出關(guān)于的方程,解方程.【詳解】二項式的各項系數(shù)的和為,二項式的各項二項式系數(shù)的和為,因為各項系數(shù)的和與其各項二項式系數(shù)的和之比為,所以,.故選:C.3、D【解析】由圓柱的側(cè)面積公式直接可得.【詳解】故選:D4、B【解析】循環(huán)體第一次運行后;第二次運行后;第三次運行后,第四次運行后;循環(huán)結(jié)束,輸出值為4,答案選B考點:程序框圖的功能5、D【解析】在△中有,再應(yīng)用正弦定理求,再在△中,即可求塔高.【詳解】由題設(shè)知:,又,△中,可得,在△中,,則.故選:D6、A【解析】畫出圖形,利用已知條件,推出,延長交橢圓于點,得到直角和直角,設(shè),則,根據(jù)橢圓的定義轉(zhuǎn)化求解,即可求得橢圓的方程.【詳解】如圖所示,,則,延長交橢圓于點,可得直角和直角,設(shè),則,根據(jù)橢圓的定義,可得,在直角中,,解得,又在中,,代入可得,所以,所以橢圓的方程為.故選:A.7、C【解析】先確定有一個項目中分配2名志愿者,其余各項目中分配1名志愿者,然后利用組合,排列,乘法原理求得.【詳解】根據(jù)題意,有一個項目中分配2名志愿者,其余各項目中分配1名志愿者,可以先從5名志愿者中任選2人,組成一個小組,有種選法;然后連同其余三人,看成四個元素,四個項目看成四個不同的位置,四個不同的元素在四個不同的位置的排列方法數(shù)有4!種,根據(jù)乘法原理,完成這件事,共有種不同的分配方案,故選:C.【點睛】本題考查排列組合的應(yīng)用問題,屬基礎(chǔ)題,關(guān)鍵是首先確定人數(shù)的分配情況,然后利用先選后排思想求解.8、C【解析】根據(jù)拋物線的概念以及幾何性質(zhì)即可求拋物線的標(biāo)準(zhǔn)方程.【詳解】依題意設(shè)拋物線方程為因為焦點到準(zhǔn)線的距離為4,所以,所以,所以拋物線方程或故選:C9、B【解析】先根據(jù)離心率得,再根據(jù)拋物線定義得最小值為(為拋物線焦點),解得,即得結(jié)果.【詳解】因為雙曲線的離心率,所以,設(shè)為拋物線焦點,則,拋物線準(zhǔn)線方程為,因此到雙曲線的上焦點的距離與到直線的距離之和等于,因為,所以,即,即雙曲線的方程為,選B.【點睛】本題考查雙曲線方程、離心率以及拋物線定義,考查基本分析求解能力,屬中檔題.10、A【解析】根據(jù)題意設(shè)出圓的方程,列式即可求出【詳解】依題可設(shè)圓的方程為,所以,解得即圓的方程是故選:A11、C【解析】先把拋物線方程整理成標(biāo)準(zhǔn)方程,進(jìn)而求得p,再根據(jù)拋物線性質(zhì)得出準(zhǔn)線方程【詳解】解:整理拋物線方程得,∴p=∵拋物線方程開口向上,∴準(zhǔn)線方程是y=﹣故答案為C【點睛】本題主要考查拋物線的標(biāo)準(zhǔn)方程和簡單性質(zhì).屬基礎(chǔ)題12、D【解析】根據(jù)空間直角坐標(biāo)系的對稱性可得答案.【詳解】根據(jù)空間直角坐標(biāo)系的對稱性可得關(guān)于平面的對稱點的坐標(biāo)為,故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題設(shè)條件可知,.當(dāng)M在直線與橢圓交點上時,在第一象限交點時有,在第三象限交點時有.顯然當(dāng)M在直線與橢圓第三象限交點時有最大值,其最大值.由此能夠求出的最大值.【詳解】解:A為橢圓右焦點,設(shè)左焦點為,則由橢圓定義,于是.當(dāng)M不在直線與橢圓交點上時,M、F、B三點構(gòu)成三角形,于是,而當(dāng)M在直線與橢圓交點上時,在第一象限交點時,有,在第三象限交點時有.顯然當(dāng)M在直線與橢圓第三象限交點時有最大值,其最大值為.故答案為:.【點睛】本題考查橢圓的基本性質(zhì),解題時要熟練掌握基本公式.14、①.②.【解析】由題意,不妨設(shè)直線與圓相切于點,由可得,代入雙曲線方程,可得,因此,即得解【詳解】如圖所示,不妨設(shè)直線與圓相切于點,,由于代入進(jìn)入,可得,漸近線方程為故答案為:,15、【解析】根據(jù)空間向量垂直得到等量關(guān)系,求出答案.【詳解】由題意得:,解得:故答案為:16、【解析】求出過切線的半徑所在直線斜率,由垂直關(guān)系得切線斜率,然后得直線方程,現(xiàn)化為一般式【詳解】圓心為,,所以切線的斜率為,切線方程為,即故答案為:【點睛】本題考查求過圓上一點的圓的切線方程,利用切線性質(zhì)求得斜率后易得直線方程三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)建立空間直角坐標(biāo)系,用點到面的距離公式即可算出答案;(2)先求出兩個面的法向量,然后用二面角公式即可.【小問1詳解】∵平面平面∴PB⊥AB,PB⊥BC,又兩兩互相垂直,所以,以點為坐標(biāo)原點,分別為軸,軸,軸建立如圖所示的空間直角坐標(biāo)系,D(3,6,0),A(0,6,0)設(shè)平面的一個法向量所以n?PD令,可得記點到平面的距離為,則d=【小問2詳解】由(1)可知平面的一個法向量為平面的一個法向量為設(shè)二面角的平面角為由圖可知,18、(1)(2)6【解析】(1)由可得,再利用正弦定理和三角函數(shù)恒等變換公可得,從而可求出角的值,(2)利用正弦定理求出,再利用余弦定理結(jié)合基本不等式可得的最大值為4,從而可求出三角形周長的最大值【小問1詳解】由,得

,由正弦定理,得,即.在中,由,得.又,所以.【小問2詳解】根據(jù)題意,得,由余弦定理,得,即,整理得,當(dāng)且僅當(dāng)時,取等號,所以的最大值為所以.所以的周長的最大值為

.19、(I)(II)【解析】(I)以,,為x,y,z軸建立空間直角坐標(biāo)系A(chǔ)﹣xyz,可得和的坐標(biāo),可得cos<,>,可得答案;(II)由(I)知,=(2,0,﹣4),=(1,1,0),設(shè)平面C1AD的法向量為=(x,y,z),由可得=(1,﹣1,),設(shè)直線AB1與平面C1AD所成的角為θ,則sinθ=|cos<,>|=,進(jìn)而可得答案解:(I)以,,x,y,z軸建立空間直角坐標(biāo)系A(chǔ)﹣xyz,則可得B(2,0,0),A1(0,0,4),C1(0,2,4),D(1,1,0),∴=(2,0,﹣4),=(0,2,4),∴cos<,>==∴異面直線A1B,AC1所成角的余弦值為:;(II)由(I)知,=(2,0,﹣4),=(1,1,0),設(shè)平面C1AD的法向量為=(x,y,z),則可得,即,取x=1可得=(1,﹣1,),設(shè)直線AB1與平面C1AD所成的角為θ,則sinθ=|cos<,>|=∴直線AB1與平面C1AD所成角的正弦值為:考點:異面直線及其所成的角;直線與平面所成的角20、(1)(2)【解析】(1)求出圓心和半徑,寫出圓的方程;(2)求出圓心到直線距離,進(jìn)而利用垂徑定理求出弦長.【小問1詳解】由題意可得,圓心為(2,0),半徑為2.則圓的方程為;【小問2詳解】由(1)可知:圓C半徑為,設(shè)圓心(2,0)到l的距離為d,則,由垂徑定理得:21、(1)見解析(2)【解析】(1)連接,利用勾股定理證明,又可證明,根據(jù)線面垂直的判定定理證明即可;(2)建立合適的空間直角坐標(biāo)系,求出所需點的坐標(biāo)和向量的坐標(biāo),然后利用待定系數(shù)法求出平面和平面的法向量,由向量的夾角公式求解即可小問1詳解】證明:如圖,連接,在中,由,可得,因為,,所以,,因為,,,則,故,因為,,,平面,則平面;【小問2詳解】解:由(1)可知,,,兩兩垂直,以點為坐標(biāo)原點,建立空間直角坐標(biāo)系如圖所示,則,0,,,0,,,0,,,2,,,0,,所以,則,,,又,設(shè)平面的法向量為,則,令,則,,故,設(shè)平面的法向量為,因為,所以,令,則,,故,所以,故平面與平面所成銳二面角的余弦值為22、(1)(2)存在,靠近點D的三等分點.【解析】(1)由題意建立

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論