四川省成都市九校2026屆高二上數(shù)學(xué)期末綜合測試模擬試題含解析_第1頁
四川省成都市九校2026屆高二上數(shù)學(xué)期末綜合測試模擬試題含解析_第2頁
四川省成都市九校2026屆高二上數(shù)學(xué)期末綜合測試模擬試題含解析_第3頁
四川省成都市九校2026屆高二上數(shù)學(xué)期末綜合測試模擬試題含解析_第4頁
四川省成都市九校2026屆高二上數(shù)學(xué)期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

四川省成都市九校2026屆高二上數(shù)學(xué)期末綜合測試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在中國古代,人們用圭表測量日影長度來確定節(jié)氣,一年之中日影最長的一天被定為冬至.從冬至算起,依次有冬至、小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個(gè)節(jié)氣,其日影長依次成等差數(shù)列,若冬至、立春、春分日影長之和為31.5尺,小寒、雨水,清明日影長之和為28.5尺,則大寒、驚蟄、谷雨日影長之和為()A.25.5尺 B.34.5尺C.37.5尺 D.96尺2.命題“,”否定是()A., B.,C., D.,3.雙曲線的漸近線方程是()A. B.C. D.4.雙曲線:的左、右焦點(diǎn)分別為、,過的直線與y軸交于點(diǎn)A、與雙曲線右支交于點(diǎn)B,若為等邊三角形,則雙曲線C的離心率為()A. B.C.2 D.5.已知傾斜角為的直線與雙曲線,相交于,兩點(diǎn),是弦的中點(diǎn),則雙曲線的漸近線的斜率是()A. B.C. D.6.國際冬奧會和殘奧會兩個(gè)奧運(yùn)會將于2022年在北京召開,這是我國在2008年成功舉辦夏季奧運(yùn)會之后的又一奧運(yùn)盛事.某電視臺計(jì)劃在奧運(yùn)會期間某段時(shí)間連續(xù)播放5個(gè)廣告,其中3個(gè)不同的商業(yè)廣告和2個(gè)不同的奧運(yùn)宣傳廣告,要求最后播放的必須是奧運(yùn)宣傳廣告,且2個(gè)奧運(yùn)宣傳廣告不能相鄰播放,則不同的播放方式有()A.120種 B.48種C.36種 D.18種7.等比數(shù)列的各項(xiàng)均為正數(shù),且,則=()A.8 B.16C.32 D.648.若數(shù)列滿足,,則數(shù)列的通項(xiàng)公式為()A. B.C. D.9.已知平面法向量為,,則直線與平面的位置關(guān)系為A. B.C.與相交但不垂直 D.10.下列說法或運(yùn)算正確的是()A.B.用反證法證明“一個(gè)三角形至少有兩個(gè)銳角”時(shí)需設(shè)“一個(gè)三角形沒有銳角”C.“,”的否定形式為“,”D.直線不可能與圓相切11.《九章算術(shù)》中,將四個(gè)面都為直角三角形的三棱錐稱為鱉臑(nào).如圖所示的三棱錐為一鱉臑,且平面,平面,若,,,則()A. B.C. D.12.已知拋物線的焦點(diǎn)與橢圓的一個(gè)焦點(diǎn)重合,過坐標(biāo)原點(diǎn)作兩條互相垂直的射線,,與分別交于,則直線過定點(diǎn)()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在圓M:中,過點(diǎn)的最長弦和最短弦分別為AC和BD,則四邊形ABCD的面積為___________.14.以點(diǎn)為圓心,且與直線相切的圓的方程是____________15.若平面內(nèi)兩條直線,平行,則實(shí)數(shù)______16.雙曲線上的一點(diǎn)到一個(gè)焦點(diǎn)的距離等于1,那么點(diǎn)到另一個(gè)焦點(diǎn)的距離為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左頂點(diǎn)、上頂點(diǎn)和右焦點(diǎn)分別為,且的面積為,橢圓上的動(dòng)點(diǎn)到的最小距離是(1)求橢圓的方程;(2)過橢圓的左頂點(diǎn)作兩條互相垂直的直線交橢圓于不同的兩點(diǎn)(異于點(diǎn)).①證明:動(dòng)直線恒過軸上一定點(diǎn);②設(shè)線段中點(diǎn)為,坐標(biāo)原點(diǎn)為,求的面積的最大值.18.(12分)已知直線,半徑為的圓與相切,圓心在軸上且在直線的右上方.(1)求圓的方程;(2)過點(diǎn)的直線與圓交于兩點(diǎn)在軸上方),問在軸正半軸上是否存在定點(diǎn),使得軸平分?若存在,請求出點(diǎn)的坐標(biāo);若不存在,請說明理由.19.(12分)設(shè)數(shù)列的前項(xiàng)和為,且.(1)求數(shù)列的通項(xiàng)公式;(2)記,求數(shù)列的前項(xiàng)和為.20.(12分)已知函數(shù).(1)求函數(shù)的極值;(2)是否存在實(shí)數(shù),,,對任意的正數(shù),都有成立?若存在,求出,,的所有值;若不存在,請說明理由.21.(12分)已知拋物線的焦點(diǎn)為,直線與拋物線交于,兩點(diǎn),且(1)求拋物線的方程;(2)若,是拋物線上一點(diǎn),過點(diǎn)的直線與拋物線交于,兩點(diǎn)(均與點(diǎn)不重合),設(shè)直線,的斜率分別為,,求證:為定值22.(10分)已知數(shù)列滿足,.(1)求證數(shù)列是等差數(shù)列,并求通項(xiàng)公式;(2)已知數(shù)列的前項(xiàng)和為,求.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】由題意可知,十二個(gè)節(jié)氣其日影長依次成等差數(shù)列,設(shè)冬至日的日影長為尺,公差為尺,利用等差數(shù)列的通項(xiàng)公式,求出,即可求出,從而得到答案【詳解】設(shè)從冬至日起,小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個(gè)節(jié)氣其日影長依次成等差數(shù)列{},如冬至日的日影長為尺,設(shè)公差為尺.由題可知,所以,,,,故選:A2、D【解析】根據(jù)含有量詞的命題的否定即可得出結(jié)論.【詳解】命題為全稱命題,則命題的否定為:,.故選:D.3、A【解析】先將雙曲線的方程化為標(biāo)準(zhǔn)方程得,再根據(jù)雙曲線漸近線方程求解即可.【詳解】解:將雙曲線的方程化為標(biāo)準(zhǔn)方程得,所以,所以其漸近線方程為:,即.故選:A.4、B【解析】由雙曲線的定義知,,又為等邊三角形,所以,由對稱性有,所以,在直角三角形中,求出,在三角形中,由余弦定理求出,從而即可求解.【詳解】解:由雙曲線的定義知,,又為等邊三角形,所以,由對稱性有,所以,在直角三角形中,,在三角形中,由余弦定理有,所以,解得,所以雙曲線C的離心率,故選:B.5、A【解析】依據(jù)點(diǎn)差法即可求得的關(guān)系,進(jìn)而即可得到雙曲線的漸近線的斜率.【詳解】設(shè),則由,可得則,即,則則雙曲線的漸近線的斜率為故選:A6、C【解析】先考慮最后位置必為奧運(yùn)宣傳廣告,再將另一奧運(yùn)廣告插入3個(gè)商業(yè)廣告之間,最后對三個(gè)商業(yè)廣告全排列,即可求解.【詳解】先考慮最后位置必為奧運(yùn)宣傳廣告,有種,另一奧運(yùn)廣告插入3個(gè)商業(yè)廣告之間,有種;再考慮3個(gè)商業(yè)廣告的順序,有種,故共有種.故選:C.7、B【解析】由等比數(shù)列的下標(biāo)和性質(zhì)即可求得答案.【詳解】由題意,,所以.故選:B.8、B【解析】根據(jù)等差數(shù)列的定義和通項(xiàng)公式直接得出結(jié)果.【詳解】因?yàn)?,所以?shù)列是等差數(shù)列,公差為1,所以.故選:B9、A【解析】.本題選擇A選項(xiàng).10、D【解析】對于A:可以解決;對于B:“一個(gè)三角形至少由兩個(gè)銳角”的反面是“只有一個(gè)銳角或沒有銳角”;對于C:全稱否定必須是全部否定;對于D:需要觀察出所給直線是過定點(diǎn)的.【詳解】A:,故錯(cuò)誤;B:“一個(gè)三角形至少由兩個(gè)銳角”的反面是“只有一個(gè)銳角或沒有銳角”,所以用反證法時(shí)應(yīng)假設(shè)只有一個(gè)銳角和沒有銳角兩種情況,故錯(cuò)誤;C:的否定形式是,故錯(cuò)誤;D:直線是過定點(diǎn)(-1,0),而圓,圓心為(2,0),半徑為4,定點(diǎn)(-1,0)到圓心的距離為2-(-1)=3<4,故定點(diǎn)在圓內(nèi),故正確;故選:D.11、A【解析】根據(jù)平面,平面求解.【詳解】因?yàn)槠矫妫矫?,所以,又,,,所?所以,故選:A12、A【解析】由橢圓方程可求得坐標(biāo),由此求得拋物線方程;設(shè),與拋物線方程聯(lián)立可得韋達(dá)定理的形式,根據(jù)可得,由此構(gòu)造方程求得,根據(jù)直線過定點(diǎn)的求法可求得定點(diǎn).【詳解】由橢圓方程知其焦點(diǎn)坐標(biāo)為,又拋物線焦點(diǎn),,解得:,則拋物線的方程為,由題意知:直線斜率不為,可設(shè),由得:,則,即,設(shè),,則,,,,,解得:或;又與坐標(biāo)原點(diǎn)不重合,,,當(dāng)時(shí),,直線恒過定點(diǎn).故選:A.【點(diǎn)睛】思路點(diǎn)睛:本題考查直線與拋物線綜合應(yīng)用中的直線過定點(diǎn)問題的求解,求解此類問題的基本思路如下:①假設(shè)直線方程,與拋物線方程聯(lián)立,整理為關(guān)于或的一元二次方程的形式;②利用求得變量的取值范圍,得到韋達(dá)定理的形式;③利用韋達(dá)定理表示出已知中的等量關(guān)系,代入韋達(dá)定理可整理得到變量間的關(guān)系,從而化簡直線方程;④根據(jù)直線過定點(diǎn)的求解方法可求得結(jié)果.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】首先將圓的方程配成標(biāo)準(zhǔn)式,即可得到圓心坐標(biāo)與半徑,從而可得點(diǎn)在圓內(nèi),即可得到過點(diǎn)的最長弦、最短弦弦長,即可求出四邊形的面積;【詳解】解:圓M:,即,圓心,半徑,點(diǎn),則,所以點(diǎn)在圓內(nèi),所以過點(diǎn)的最長弦,又,所以最短弦,所以故答案為:14、【解析】根據(jù)直線與圓相切,圓心到直線距離等于半徑,由點(diǎn)到直線的距離公式求出半徑,然后可得.【詳解】圓心到直線的距離,又圓與直線相切,所以,所以圓的方程為.故答案為:15、-1或2【解析】根據(jù)兩直線平行,利用直線平行的條件列出方程解得答案.【詳解】∵,∴,解得或,經(jīng)驗(yàn)證都符合題意,故答案為:-1或216、【解析】首先將已知的雙曲線方程轉(zhuǎn)化為標(biāo)準(zhǔn)方程,然后根據(jù)雙曲線的定義知雙曲線上的點(diǎn)到兩個(gè)焦點(diǎn)的距離之差的絕對值為,即可求出點(diǎn)到另一個(gè)焦點(diǎn)的距離為17.考點(diǎn):雙曲線的定義.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)①證明見解析;②【解析】(1)根據(jù)題意得,,解方程即可;(2)①設(shè)直線:,直線:,聯(lián)立曲線分別求出點(diǎn)和的坐標(biāo),求直線方程判斷定點(diǎn)即可;②根據(jù)題意得,代入求最值即可.【小問1詳解】根據(jù)題意得,,,又,三個(gè)式子聯(lián)立解得,,,所以橢圓的方程為:【小問2詳解】①證明:設(shè)兩條直線分別為和,根據(jù)題意和得斜率存在且不等于;因?yàn)椋栽O(shè)直線:,直線:;由,解得,所以,同理,.當(dāng)時(shí),,所以直線的方程為:,整理得,此時(shí)直線過定點(diǎn);當(dāng)時(shí),直線的方程為:,此時(shí)直線過定點(diǎn),故直線恒過定點(diǎn).②根據(jù)題意得,,,,所以,當(dāng)且僅當(dāng),即時(shí)等號成立,故的面積的最大值為:.【點(diǎn)睛】解決直線與橢圓綜合問題時(shí),要注意:(1)注意觀察應(yīng)用題設(shè)中的每一個(gè)條件,明確確定直線、橢圓的條件;(2)強(qiáng)化有關(guān)直線與橢圓聯(lián)立得出一元二次方程后的運(yùn)算能力,重視根與系數(shù)之間的關(guān)系、弦長、斜率、三角形的面積等問題18、(1);(2)存在,.【解析】(1)設(shè)出圓心,根據(jù)圓心到直線距離等于半徑列方程求出的值可得圓心坐標(biāo),進(jìn)而可得圓的方程;(2)由題可設(shè)直線的方程為,與圓的方程聯(lián)立,利用韋達(dá)定理及可得,即得.【小問1詳解】由已知可設(shè)圓心,則,解得或(舍).所以圓.【小問2詳解】由題可設(shè)直線的方程為,由,得到:顯然成立,所以.①若軸平分,則,所以:,整理得:,將①代入整理得對任意的恒成立,則.∴存在點(diǎn)為時(shí),使得軸平分.19、(1);(2).【解析】(1)利用可求得結(jié)果;(2)由(1)可得,利用裂項(xiàng)相消法可求得結(jié)果.【小問1詳解】當(dāng)時(shí),;當(dāng)時(shí),,;經(jīng)檢驗(yàn):滿足;綜上所述:.【小問2詳解】由(1)得:,.20、(1)極小值為:,無極大值(2),,【解析】(1)先求導(dǎo)求單調(diào)性,再判斷極值點(diǎn)求極值即可;(2)易知,只需要為函數(shù)和的公切線即可,求出公切線,代入后分別證明和成立即可.【小問1詳解】由題意知:,令,解得,令,解得,所以函數(shù)在單調(diào)遞增,在單調(diào)遞減,所以為函數(shù)的極小值點(diǎn),即極小值為:,無極大值.【小問2詳解】設(shè),易知,所以點(diǎn)是和的公共點(diǎn),要使成立,只需要為函數(shù)和的公切線即可,由(1)知,,所以在點(diǎn)處的切線為:,同理可得在點(diǎn)處的切線為:,由題意知為同一條直線,所以解得,即等價(jià)于;下面證明這個(gè)式子成立:首先證明等價(jià)于,設(shè),所以,恒成立,所以單調(diào)遞增,易知,所以當(dāng)時(shí),,當(dāng)時(shí),,所以在單調(diào)遞減,在單調(diào)遞增,所以,故不等式成立,即成立;再證明:等價(jià)于,設(shè),所以,所以當(dāng)時(shí),,當(dāng)時(shí),,所以在單調(diào)遞增,在單調(diào)遞減,所以,故不等式成立,即成立;綜上所述,存在,,使得成立.故:,,.【點(diǎn)睛】函數(shù)的單調(diào)性是函數(shù)的重要性質(zhì)之一,它的應(yīng)用貫穿于整個(gè)高中數(shù)學(xué)的教學(xué)之中.某些數(shù)學(xué)問題從表面上看似乎與函數(shù)的單調(diào)性無關(guān),但如果我們能挖掘其內(nèi)在聯(lián)系,抓住其本質(zhì),那么運(yùn)用函數(shù)的單調(diào)性解題,能起到化難為易、化繁為簡的作用.因此對函數(shù)的單調(diào)性進(jìn)行全面、準(zhǔn)確的認(rèn)識,并掌握好使用的技巧和方法,這是非常必要的.根據(jù)題目的特點(diǎn),構(gòu)造一個(gè)適當(dāng)?shù)暮瘮?shù),利用它的單調(diào)性進(jìn)行解題,是一種常用技巧.許多問題,如果運(yùn)用這種思想去解決,往往能獲得簡潔明快的思路,有著非凡的功效.21、(1)(2)證明見解析【解析】(1)聯(lián)立直線和拋物線方程,根據(jù)拋物線定義和焦半徑公式得到,根據(jù)韋達(dá)定理可得到最終結(jié)果;(2)代入點(diǎn)坐標(biāo)可得到參數(shù)的值,設(shè)直線的方程為,聯(lián)立該直線和拋物線方程,,代入韋達(dá)定理可得到最終

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論