版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
第二十七章
相似27.3.2平面直角坐標(biāo)系中的位似榮德基Uoo
磨678910AB答
案
呈
現(xiàn)習(xí)題鏈接溫馨提示:點(diǎn)擊
進(jìn)入講評(píng)25BCD榮德基基礎(chǔ)提優(yōu)題1.在平面直角坐標(biāo)系xOy中,以原點(diǎn)O△ABO
縮小為原來的,,得到△CDO,的對(duì)應(yīng)點(diǎn)C
的坐標(biāo)是(
B
)A.(-2,1)B.
(-2,1)
或(2,-
1)C.(-8,4)為位似中心,把則點(diǎn)A(-4,2)D.
(-8,4)
或(8,-4)榮德基MuB2.
[2025浙江]如圖,五邊形
ABCDE,A'B'C'D'E
'是以坐標(biāo)
原點(diǎn)0為位似中心的位似圖形,已知點(diǎn)A,A
'的坐標(biāo)分別為(2,0),(3,0).若DE
的長為3,則D'E'的長為(C)A.
B.4
D.5基礎(chǔ)提優(yōu)題
u德B基3.
[2025威海期末]在平面直角坐標(biāo)系中,△ABC與△A'B'C'位似,位似中心是原點(diǎn)0.若對(duì)應(yīng)點(diǎn)的坐標(biāo)分別為A(1,-4),A'(-2,8),
則△ABC與△A'B'C的面積比為(C)A.1:2B.2:1C.1:4D.4:1基礎(chǔ)提優(yōu)題
榮德基MuB4.
[2025聊城月考]如圖,正方形OEFG
和正方形ABCD
是
位似圖形,點(diǎn)F的坐標(biāo)為(-
1,-
1),點(diǎn)A的坐標(biāo)為(3,2),則這兩個(gè)正方形位似中心的坐標(biāo)是(
D)A.(1,0)B.(-5,-1)C.(1,0)或(-5,-
1)D.(1,0)
或(
-
5,
-
2)基礎(chǔ)提優(yōu)題榮德基MuB【點(diǎn)撥】∵在正方形ABCD
和正方形OEFG
中,點(diǎn)A和點(diǎn)F的坐標(biāo)分別為(3,2),(-
1,-
1),∴E(-1,0),G(O,-1),C(5,0).(1)當(dāng)E和C是對(duì)應(yīng)頂點(diǎn),G和A是對(duì)應(yīng)
頂點(diǎn)時(shí),連接AG,位似中心就是EC與AG的交點(diǎn)
.設(shè)
AG
所在直線的解析式為
y=kx+b(k≠0),基礎(chǔ)提優(yōu)題u德B基則∴AG所在直線的解析式為y=x-1.當(dāng)y=0
時(shí),x=1,∴AG
與EC
的交點(diǎn)坐標(biāo)是(1,0);(2)當(dāng)A和E是對(duì)應(yīng)頂點(diǎn),C
和G是對(duì)應(yīng)頂點(diǎn)時(shí),連接AE,CG,
位似中心就是AE
與CG的交點(diǎn)
.
設(shè)AE
所在直線的解析式為y=kx+b'(k'≠0),則
解得∴AE所在直線的解析式為①基礎(chǔ)提優(yōu)題榮德基MuB基礎(chǔ)提優(yōu)題同理,設(shè)
CG
所在直線的解析式為
y=mx+n(m≠0),∴CG
所在直線的解析式為榮德基MuB聯(lián)立①②
解得∴AE
與
CG
的交點(diǎn)坐標(biāo)是(
-5,
-
2)
.綜上所述,這兩個(gè)正方形位似中心的坐標(biāo)是(1,0)或
(-5,-2)
.基礎(chǔ)提優(yōu)題榮德基MuB基礎(chǔ)提優(yōu)題
榮德基5.如圖,在平面直角坐標(biāo)系中,△ABC與△AB'C的相似比
為1:2,點(diǎn)A是位似中心,已知A(2,0),Ct,1),則點(diǎn)C
的坐標(biāo)為
(6-2t,-2)
.
(結(jié)果用含的式子表示)CB'0
A
B
XC'·
.
∵∠NAC'=∠MAC,
∴△ACM∽△AC'N∴
.∵A(2,0),C(t,1),∴OA=2,OM=t,CM=1.
∴AM【點(diǎn)撥】如圖,過點(diǎn)C
作
CM⊥AB于點(diǎn)M,
過點(diǎn)C'作C'NLAB'于點(diǎn)N則∠ANC'=∠AMC=90°∵△ABC
與△AB'C的相似比為1:2,∴ON=AN-OA=2t-6.∴點(diǎn)C的坐標(biāo)為(6-2t,-2)
..
∴AN=2t-4,C'N=2.基礎(chǔ)提優(yōu)題
u德B基基礎(chǔ)提優(yōu)題
德基6.如圖,在由邊長為1個(gè)單位長度的小正方形組成的網(wǎng)格中
建立平面直角坐標(biāo)系xOy,△ABC的頂點(diǎn)和點(diǎn)A?均為格點(diǎn)(網(wǎng)格線的交點(diǎn)).已知點(diǎn)A和A?的坐標(biāo)分別為(-
1,-3)
和(2,6).(1)在所給的網(wǎng)格圖中描出邊AB的中點(diǎn)D,
并寫出點(diǎn)D的坐標(biāo);(2)以點(diǎn)○為位似中心,將△ABC
放大得到△A?B?C?
,
使得點(diǎn)A
的對(duì)應(yīng)點(diǎn)為A?
,
請(qǐng)?jiān)谒o的網(wǎng)格圖中畫出△A?B?C?
.基礎(chǔ)提優(yōu)題【解】(1)如圖,點(diǎn)D即為所求
.∵A(-1,-3),B(-3,1),∴點(diǎn)D的坐標(biāo)為(-2,-1)
.(2)如圖,△A?
B?C?即
為所求作的三角形.榮德基U7.有這樣一段表述:“在平面直角坐標(biāo)系中,將一個(gè)多邊形每個(gè)頂點(diǎn)的橫坐標(biāo)、縱坐標(biāo)都乘同一個(gè)數(shù)k(k≠0),所對(duì)應(yīng)的圖形與原圖形…..”請(qǐng)利用這一規(guī)律解答下面問題:已知
M(a,b),N(x,y),
且
MN=6,,
則PQ
的長為(
A
)A.4
B.6
C.9D.12綜合應(yīng)用題榮德基MuB若綜合應(yīng)用題
u德B基8.
如圖,正方形ABCD
的兩邊BC,AB
分別在平面直角坐標(biāo)系的x軸,y軸的正半軸上,正方形A'B'C'D′與正方形ABCD是以AC
的中點(diǎn)O'為中心的位似圖形,已知AC=3√2,
若點(diǎn)A'的坐標(biāo)為(1,2),則正方形A'B'C'D與正方形ABCD的相似比是(
B)B.
D.
C.
ACB.
∴CA':AC=2:3.∵正方形A'B'C'D與正方形ABCD是以AC的中點(diǎn)
O'為中心的位似圖形,∴AA'=CC'.∴易得AA'=CC′=A'C'.
∴A'C':AC=1:3.∴正方形A'B'C'D'與正方形
ABCD
的相似比是故選B.綜合應(yīng)用題
u德B基【點(diǎn)撥】延長A'B'交BC
于點(diǎn)E,
如圖.
∵在正方形ABCD中,AC
=3
√2,∴BC=AB=3.
∵
點(diǎn)A
'的坐標(biāo)為(1,2),∴OE=1.
∴EC=3-1=2.
∴CE:BC=2:3.
∵A'E//AB,∴
易得△A'CE∽△綜合應(yīng)用題
u德B基9.如圖,在平面直角坐標(biāo)系中,每個(gè)網(wǎng)格小正方形的邊長均為1
個(gè)單位長度,以點(diǎn)P為位似中心作正方形PA?A?A?
,正方形PA?A?A?,…,按此規(guī)律作下去,所作正方形的頂點(diǎn)均在格點(diǎn)上,其中正方形PA?A?A?的頂點(diǎn)坐標(biāo)分別為P(-3,0),A?(-2,1),A?(-1,0),A?(-2,-1),則頂點(diǎn)A?026的坐標(biāo)為(673,676).【
點(diǎn)撥
】∵A?(-2,1),A?(-1,2),A?(0,3),A?0(1,4),
…
,∴A?n-2(n-3,n).∵2026=3×676-2,∴A?026的坐標(biāo)為(673,676).綜合應(yīng)用題榮德基MuB10.[2025唐山期末]如圖,點(diǎn)A(3,4)
在反比例函數(shù)L:
勺圖象上,點(diǎn)B(3,1),
以點(diǎn)O為位似中心,在AB
的右側(cè)
將線段AB放大為原來的n
倍得到線段A?B
?(n>1).(1)k=
12
_
;(2)若線段A?B?與L總有交點(diǎn),
則n的最大值為
2
綜合應(yīng)用題u德B基綜合應(yīng)用題【點(diǎn)撥】(1)∵點(diǎn)A(3,4)在反比例函數(shù)∴-2≤n≤2,且
n≠0.
∵n>1,
∴1<n≤2.∴n
的最大值為2
.(2)根據(jù)題意,得B?
的坐標(biāo)為(3n,n)
.∵線段A?B?與
L
總有交點(diǎn),∴象上,∴的圖榮德基MuB11.如圖,已知在Rt△ABC中,∠ABC=90°,點(diǎn)A在y軸上,點(diǎn)B在x軸上,AB=10,BC=5,C(m,3).(1)直接寫出點(diǎn)A,B
的坐標(biāo)及m
的值;【解】A(0,8),B(6,0),m=10.C0
B
X綜合應(yīng)用題榮德基【點(diǎn)撥】如圖,過點(diǎn)C作CM⊥x軸于點(diǎn)M,
則∠BMC=90°,
∴∠CBM+∠BCM=90°.∵∠ABC=90°,∴∠ABO+∠CBM=90°.∴∠ABO=LBCM.又∵∠AOB=∠CMB=90°,∴△AOB∽△BMC.綜合應(yīng)用題
u德B基綜合應(yīng)用題
又∵AB=10
,BC=5,∴
∴C(m,3),
∴OM=m,MC=3
∴
解得
BO=6.●
,
B(6,0)
.∴A(0,8)
.∴△AOB∽△BMC,∴。
∴m=OM=4+6=10.榮德基UPPERCASE
BUDGETS綜合應(yīng)用題
榮德基(2)在第一象限中,畫出以原點(diǎn)0為位似中心,將△ABC縮小
后所得的△DEF,使△DEF與△ABC
的對(duì)應(yīng)邊之比為1:2.【解】如圖所示,△DEF即為所求.CXD0FBE12.
如圖,點(diǎn)D是拋物線的對(duì)稱軸與x軸的交點(diǎn),點(diǎn)E
的坐標(biāo)為(0,1),點(diǎn)E與點(diǎn)F
關(guān)于拋物線的對(duì)稱軸對(duì)稱,連接DE,DF,EF,點(diǎn)
P,Q是拋物線上的兩個(gè)動(dòng)點(diǎn),若△DPQ與△DEF
是以點(diǎn)D為位似中心的位似圖形,求△DPQ
與△DEF的相似比
.B
E
F
A0
D
X創(chuàng)新拓展題
榮德基又∵點(diǎn)E
的坐標(biāo)為(0,1),且點(diǎn)E與點(diǎn)F
關(guān)于直線x=1對(duì)稱,∴點(diǎn)F.創(chuàng)新拓展題
u德B基∴拋物線的對(duì)稱軸為直線x=1.【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 加油站安全管理三級(jí)教育考試試題含答案
- 球罐檢罐施工方案
- 2025年特殊作業(yè)試題卷及答案
- (2025年)醫(yī)療器械監(jiān)督管理?xiàng)l例培訓(xùn)試題及答案
- 2025年消防情景模擬題目及答案
- 施工總體交通導(dǎo)行方案
- 2026年組織部個(gè)人年度工作總結(jié)
- 患者誤吸時(shí)的應(yīng)急預(yù)案課件
- 2025年電工技師配電箱線路絕緣電阻檢測方法實(shí)戰(zhàn)訓(xùn)練試卷及答案
- 建設(shè)工程施工合同糾紛要素式起訴狀模板格式有效規(guī)范
- 湖南省張家界市永定區(qū)2024-2025學(xué)年八年級(jí)上學(xué)期期末考試數(shù)學(xué)試題(含答案)
- 福建省龍巖市連城一中2025屆高考英語五模試卷含解析
- 耳聾護(hù)理學(xué)習(xí)
- 環(huán)境監(jiān)測崗位職業(yè)技能考試題庫含答案
- 幼兒園入學(xué)準(zhǔn)備指導(dǎo)要點(diǎn)試題
- 《機(jī)械常識(shí)(第2版)》中職技工全套教學(xué)課件
- 小島經(jīng)濟(jì)學(xué)(中文版)
- 礦卡司機(jī)安全教育考試卷(帶答案)
- 設(shè)備預(yù)防性維修維護(hù)培訓(xùn)課件
- 現(xiàn)代試井解釋基礎(chǔ)
- 酒店賓館食堂早餐券飯票模板
評(píng)論
0/150
提交評(píng)論