版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
九江市第一中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.的展開式中,常數(shù)項為()A. B.C. D.2.已知,是雙曲線的左、右焦點,點A是的左頂點,為坐標原點,以為直徑的圓交的一條漸近線于、兩點,以為直徑的圓與軸交于兩點,且平分,則雙曲線的離心率為()A. B.2C. D.33.圓心在x軸負半軸上,半徑為4,且與直線相切的圓的方程為()A. B.C. D.4.兩位同學(xué)課余玩一種類似于古代印度的“梵塔游戲”:有3個柱子甲、乙、丙,甲柱上有個盤子,最上面的兩個盤子大小相同,從第二個盤子往下大小不等,大的在下,小的在上(如圖).把這個盤子從甲柱全部移到乙柱游戲結(jié)束,在移動的過程中每次只能移動一個盤子,甲、乙、丙柱都可以利用,且3個柱子上的盤子始終保持小的盤子不能放在大的盤子之下.設(shè)游戲結(jié)束需要移動的最少次數(shù)為,則當時,和滿足A. B.C. D.5.數(shù)列中,滿足,,設(shè),則()A. B.C. D.6.已知雙曲線C:的漸近線方程是,則m=()A.3 B.6C.9 D.7.已知函數(shù),若在處取得極值,且恒成立,則實數(shù)的最大值為()A. B.C. D.8.如果一個矩形長與寬的比值為,那么稱該矩形為黃金矩形.如圖,已知是黃金矩形,,分別在邊,上,且也是黃金矩形.若在矩形內(nèi)任取一點,則該點取自黃金矩形內(nèi)的概率為()A. B.C. D.9.與圓和圓都外切的圓的圓心在()A.一個圓上 B.一個橢圓上C.雙曲線的一支上 D.一條拋物線上10.現(xiàn)要完成下列兩項調(diào)查:①從某社區(qū)70戶高收入家庭、335戶中等收入家庭、95戶低收入家庭中選出100戶,調(diào)查社會購買能力的某項指標;②從某中學(xué)的15名藝術(shù)特長生中選出3名調(diào)查學(xué)習(xí)負擔(dān)情況.這兩項調(diào)查宜采用的抽樣方法是()A①簡單隨機抽樣,②分層抽樣 B.①分層抽樣,②簡單隨機抽樣C.①②都用簡單隨機抽樣 D.①②都用分層抽樣11.已知橢圓的右焦點為F,短軸的一個端點為P,直線與橢圓相交于A、B兩點.若,點P到直線l的距離不小于,則橢圓C離心率的取值范圍為()A. B.C. D.12.若函數(shù)的導(dǎo)函數(shù)在區(qū)間上是減函數(shù),則函數(shù)在區(qū)間上的圖象可能是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知空間向量,,若,則______14.已知定點,點在直線上運動,則,兩點的最短距離為________15.萊昂哈德·歐拉于1765年在他的著作《三角形的幾何學(xué)》中首次提出定理:三角形的重心、垂心和外心共線.后來人們稱這條直線為該三角形的歐拉線.已知的三個頂點坐標分別是,,,則的垂心坐標為______,的歐拉線方程為______16.美好人生路車站早上有6:40,6:50兩班開往A校的公交車,若李華同學(xué)在早上6:35至6:50之間隨機到達該車站,乘開往A校的公交車,公交車準時發(fā)車,則他等車時間不超過5分鐘的概率為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)求函數(shù)在點處的切線方程;(2)求函數(shù)的單調(diào)區(qū)間及極值18.(12分)已知函數(shù)(m≥0).(1)當m=0時,求曲線在點(1,f(1))處的切線方程;(2)若函數(shù)的最小值為,求實數(shù)m的值.19.(12分)已知橢圓:的離心率為,,分別為橢圓的左,右焦點,為橢圓上一點,的周長為.(1)求橢圓的方程;(2)為圓上任意一點,過作橢圓的兩條切線,切點分別為A,B,判斷是否為定值?若是,求出定值:若不是,說明理由,20.(12分)已知函數(shù)(1)當時,討論的單調(diào)性;(2)當時,證明21.(12分)已知圓與直線相切(1)求圓O的標準方程;(2)若線段AB的端點A在圓O上運動,端點B的坐標是,求線段AB的中點M的軌跡方程22.(10分)已知函數(shù)f(x)=(1)求函數(shù)f(x)在x=1處的切線方程;(2)求證:
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】寫出展開式通項,令的指數(shù)為零,求出參數(shù)的值,代入通項計算即可得解.【詳解】的展開式通項為,令,可得,因此,展開式中常數(shù)項為.故選:A.2、B【解析】由直徑所對圓周角是直角,結(jié)合雙曲線的幾何性質(zhì)和角平分線定義可解.【詳解】由圓的性質(zhì)可知,,,所以,因為,所以又因為平分,所以,由,得,所以,即所以故選:B3、A【解析】根據(jù)題意,設(shè)圓心為坐標為,,由直線與圓相切的判斷方法可得圓心到直線的距離,解得的值,即可得答案【詳解】根據(jù)題意,設(shè)圓心為坐標為,,圓的半徑為4,且與直線相切,則圓心到直線的距離,解得:或13(舍,則圓的坐標為,故所求圓的方程為,故選:A4、C【解析】通過寫出幾項,尋找規(guī)律,即可得到和滿足的遞推公式.【詳解】若甲柱有個盤,甲柱上的盤從上往下設(shè)為,其中,,當時,將移到乙柱,只移動1次;當時,將移到乙柱,將移到乙柱,移動2次;當時,將移到丙柱,將移到丙柱,將移到乙柱,再將移到乙柱,將移到乙柱,;當時,將上面的3個移到丙柱,共次,然后將移到乙柱,再將丙柱的3個移到乙柱,共次,所以次;當時,將上面的4個移到丙柱,共次,然后將移到乙柱,再將丙柱的4個移到乙柱,共次,所以次;……以此類推,可知,故選.【點睛】主要考查了數(shù)列遞推公式的求解,屬于中檔題.這類型題的關(guān)鍵是寫出幾項,尋找規(guī)律,從而得到對應(yīng)的遞推公式.5、C【解析】由遞推公式可歸納得,由此可以求出的值【詳解】因為,,所以,,,因此故選C【點睛】本題主要考查利用數(shù)列的遞推式求值和歸納推理思想的應(yīng)用,意在考查學(xué)生合情推理的意識和數(shù)學(xué)建模能力6、C【解析】根據(jù)雙曲線的漸近線求得的值.【詳解】依題意可知,雙曲線的漸近線為,所以.故選:C7、D【解析】根據(jù)已知在處取得極值,可得,將在恒成立,轉(zhuǎn)化為,只需求,求出最小值即可得答案【詳解】解:,,由在處取得極值,得,解得,所以,,其中,.當時,,此時函數(shù)單調(diào)遞減,當時,,此時函數(shù)單調(diào)遞增,故函數(shù)在處取得極小值,,恒成立,轉(zhuǎn)化為,令,,則,,令得,當時,,此時函數(shù)單調(diào)遞減,當時,,此時函數(shù)單調(diào)遞增,所以,即得,故選:D8、B【解析】由幾何概型的面積型,只需求小矩形的面積和大矩形面積之比.【詳解】由題意,不妨設(shè),則,又也是黃金矩形,則,又,解得,于是大矩形面積為:,小矩形的面積為,由幾何概型的面積型,概率為若在矩形內(nèi)任取一點,則該點取自黃金矩形內(nèi)的概率為:.故選:B.9、C【解析】設(shè)動圓的半徑為,然后根據(jù)動圓與兩圓都外切得,再兩式相減消去參數(shù),則滿足雙曲線的定義,即可求解.【詳解】設(shè)動圓的圓心為,半徑為,而圓的圓心為,半徑為1;圓的圓心為,半徑為2依題意得,則,所以點的軌跡是雙曲線的一支故選:C10、B【解析】通過簡單隨機抽樣和分層抽樣的定義辨析得到選項【詳解】在①中,由于購買能力與收入有關(guān),應(yīng)該采用分層抽樣;在②中,由于個體沒有明顯差別,而且數(shù)目較少,應(yīng)該采用簡單隨機抽樣故選:B11、D【解析】設(shè)橢圓的左焦點為,由題可得,由點P到直線l的距離不小于可得,進而可求的范圍,即可得出離心率范圍.【詳解】設(shè)橢圓的左焦點為,P為短軸的上端點,連接,如圖所示:由橢圓的對稱性可知,A,B關(guān)于原點對稱,則,又,∴四邊形為平行四邊形,∴,又,解得:,點P到直線l距離:,解得:,即,∴,∴.故選:D.【點睛】關(guān)鍵點睛:本題考查橢圓離心率的求解,解題的關(guān)鍵是由橢圓定義得出,再根據(jù)已知條件得出.12、A【解析】根據(jù)導(dǎo)數(shù)概念和幾何意義判斷【詳解】由題意得,圖象上某點處的切線斜率隨增大而減小,滿足要求的只有A故選:A二、填空題:本題共4小題,每小題5分,共20分。13、7【解析】根據(jù)題意,結(jié)合空間向量的坐標運算,即可求解.【詳解】根據(jù)題意,易知,因為,所以,即,解得故答案為:714、【解析】線段最短,就是說的距離最小,此時直線和直線垂直,可先求的斜率,再求直線的方程,然后與直線聯(lián)立求交點即可【詳解】定點,點在直線上運動,當線段最短時,就是直線和直線垂直,的方程為:,它與聯(lián)立解得,所以的坐標是,所以,故答案為:15、①.##(0,1.5)②.【解析】由高線聯(lián)立可得垂心,由垂心與重心可得歐拉線方程.【詳解】由,可知邊上的高所在的直線為,又,因此邊上的高所在的直線的斜率為,所以邊上的高所在的直線為:,即,所以,所以的垂心坐標為,由重心坐標公式可得的重心坐標為,所以的歐拉線方程為:,化簡得.故答案為:;16、【解析】根據(jù)題意,李華等車不超過5分鐘,則他必須在6:35-6:40或者6:45-6:50到達,進而根據(jù)幾何概型求概率的方法求得答案.【詳解】由題意,李華等車不超過5分鐘,則他必須在6:35-6:40或者6:45-6:50到達,則所求概率.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)+1;(2)單調(diào)增區(qū)間,單調(diào)減區(qū)間是和,極大值為,極小值為【解析】(1)根據(jù)導(dǎo)數(shù)的幾何意義可求出切線斜率,求出后利用點斜式即可得解;(2)求出函數(shù)導(dǎo)數(shù)后,解一元二次不等式分別求出、時的取值范圍即可得解.【詳解】(1)因為,所以,∴切線方程為,即+1;(2),所以當或時,,當時,,所以函數(shù)單調(diào)增區(qū)間是,單調(diào)減區(qū)間是和,極大值為,極小值為18、(1)(2)【解析】(1)求導(dǎo),利用導(dǎo)函數(shù)的幾何意義求解切線方程的斜率,進而求出切線方程;(2)對導(dǎo)函數(shù)再次求導(dǎo),判斷其單調(diào)性,結(jié)合隱零點求出其最小值,列出方程,求出實數(shù)m的值.【小問1詳解】當時,因為,所以切線的斜率為,所以切線方程為,即.【小問2詳解】因為,令,因為,所以在上單調(diào)遞增,當實數(shù)時,,;當實數(shù)時,,;當實數(shù)時,,所以總存在一個,使得,且當時,;當時,,所以,令,因為,所以單調(diào)遞減,又,所以時,所以,即.19、(1)(2)是;【解析】(1)由離心率和焦點三角形周長可求出,結(jié)合關(guān)系式得出,即可得出橢圓的方程;(2)由平行于軸特殊情況求出,即;當平行于軸時,設(shè)過的直線為,聯(lián)立橢圓方程,令化簡得關(guān)于的二次方程,由韋達定理即可求解.【小問1詳解】由題可知,,解得,又,解得,故橢圓的標準方程為:;【小問2詳解】如圖所示,當平行于軸時,恰好平行于軸,,,;當不平行于軸時,設(shè),設(shè)過點的直線為,聯(lián)立得,令得,化簡得,設(shè),則,又,故,即.綜上所述,.20、(1)單調(diào)遞減,在單調(diào)遞增;(2)見解析.【解析】(1)求f(x)導(dǎo)數(shù),討論導(dǎo)數(shù)的正負即可求其單調(diào)性;(2)由于,則,只需證明,構(gòu)造函數(shù),證明其最小值大于0即可.【小問1詳解】時,,當時,,∴,當時,,∴,∴在單調(diào)遞減,在單調(diào)遞增;【小問2詳解】由于,∴,∴只需證明,令,則,∴在上為增函數(shù),而,∴在上有唯一零點,且,當時,,g(x)單調(diào)遞減,當時,,g(x)單調(diào)遞增,∴的最小值為,由,得,則,∴,當且僅當時取等號,而,∴,∴,即,∴當時,.【點睛】本題考察了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,也考察了利用導(dǎo)數(shù)研究函數(shù)的最值,解題過程中設(shè)計到隱零點的問題,需要掌握隱零點處理問題的常見思路和方法.21、(1)(2)【解析】(1)由圓心到直線的距離等于半徑即可求出.(2)由相關(guān)點法即可求出軌跡方程.【小問1詳解】已知圓與直線相切,所以圓心到直線的距離為半徑.所以,所以圓O的標準方程為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 乳甲外科出科試題及答案
- 軌道交通電力牽引技術(shù)
- 2026 年初中英語《并列句》專項練習(xí)與答案 (100 題)
- 2026年深圳中考英語三輪復(fù)習(xí)沖刺試卷(附答案可下載)
- 菊花淡淡題目及答案
- 2026年深圳中考數(shù)學(xué)整式的運算試卷(附答案可下載)
- 2026年深圳中考生物人體的生命活動調(diào)節(jié)試卷(附答案可下載)
- 2026年深圳中考歷史中國古代民族關(guān)系與對外交往試卷(附答案可下載)
- 稅務(wù)實操答案及題庫
- 油庫大練兵 題庫及答案
- 治療失眠癥的認知行為療法訓(xùn)練
- 太原師范學(xué)院簡介
- 2026年湘西民族職業(yè)技術(shù)學(xué)院單招職業(yè)傾向性考試題庫新版
- 生產(chǎn)安全事故調(diào)查分析規(guī)則
- 2021??低旸S-AT1000S超容量系列網(wǎng)絡(luò)存儲設(shè)備用戶手冊
- 水利水電工程單元工程施工質(zhì)量驗收標準第8部分:安全監(jiān)測工程
- 【政治】2025年高考真題政治-海南卷(解析版-1)
- DB50∕T 1571-2024 智能網(wǎng)聯(lián)汽車自動駕駛功能測試規(guī)范
- 低蛋白血癥患者的護理講課件
- 建設(shè)工程招投標培訓(xùn)課件
- 健康骨骼課件
評論
0/150
提交評論