版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
北京市東城區(qū)第五中學(xué)2026屆數(shù)學(xué)高二上期末經(jīng)典模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知橢圓的兩個(gè)焦點(diǎn)分別為,若橢圓上不存在點(diǎn),使得是鈍角,則橢圓離心率的取值范圍是()A. B.C. D.2.曲線與曲線()的()A.長軸長相等 B.短軸長相等C.離心率相等 D.焦距相等3.直線過橢圓內(nèi)一點(diǎn),若點(diǎn)為弦的中點(diǎn),設(shè)為直線的斜率,為直線的斜率,則的值為()A. B.C. D.4.拋物線的準(zhǔn)線方程是A. B.C. D.5.設(shè)、是兩條不同的直線,、、是三個(gè)不同的平面,則下列命題正確的是()A.若,則 B.若,則C.若,則 D.若,則6.設(shè)、分別是橢圓()的左、右焦點(diǎn),過的直線l與橢圓E相交于A、B兩點(diǎn),且,則的長為()A. B.1C. D.7.我國古代數(shù)學(xué)名著《算法統(tǒng)宗》記有行程減等問題:三百七十八里關(guān),初行健步不為難次日腳痛減一半,六朝才得到其關(guān).要見每朝行里數(shù),請(qǐng)公仔細(xì)算相還.意為:某人步行到378里的要塞去,第一天走路強(qiáng)壯有力,但把腳走痛了,次日因腳痛減少了一半,他所走的路程比第一天減少了一半,以后幾天走的路程都比前一天減少一半,走了六天才到達(dá)目的地.請(qǐng)仔細(xì)計(jì)算他每天各走多少路程?在這個(gè)問題中,第四天所走的路程為()A.96 B.48C.24 D.128.設(shè),,則與的等比中項(xiàng)為()A. B.C. D.9.某校為了解學(xué)生學(xué)習(xí)的情況,采用分層抽樣的方法從高一人、高二人、高三人中,抽取人進(jìn)行問卷調(diào)查.已知高二被抽取的人數(shù)為人,那么高三被抽取的人數(shù)為()A. B.C. D.10.某公司門前有一排9個(gè)車位的停車場(chǎng),從左往右數(shù)第三個(gè),第七個(gè)車位分別停著A車和B車,同時(shí)進(jìn)來C,D兩車.在C,D不相鄰的情況下,C和D至少有一輛與A和B車相鄰的概率是()A. B.C. D.11.七巧板是中國古代勞動(dòng)人民發(fā)明的一種傳統(tǒng)智力玩具,被譽(yù)為“東方魔板”,它是由五塊等腰直角三角形,一塊正方形和一塊平行四邊形共七塊板組成的.如圖是一個(gè)用七巧板拼成的正方形,若在此正方形中隨機(jī)地取一點(diǎn),則該點(diǎn)恰好取自白色部分的概率為()A. B.C. D.12.已知是虛數(shù)單位,若復(fù)數(shù)滿足,則()A. B.2C. D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知點(diǎn)為雙曲線,右支上一點(diǎn),,為雙曲線的左、右焦點(diǎn),點(diǎn)為線段上一點(diǎn),的角平分線與線段交于點(diǎn),且滿足,則________;若為線段的中點(diǎn)且,則雙曲線的離心率為________14.4與16的等比中項(xiàng)是________.15.設(shè)直線,直線,若,則_______.16.在數(shù)列中,,,記是數(shù)列的前項(xiàng)和,則=___.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知正項(xiàng)等比數(shù)列的前項(xiàng)和為,滿足,.記.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)列前項(xiàng)和,求使得不等式成立的的最小值.18.(12分)在等比數(shù)列{}中,(1),,求;(2),,求的值.19.(12分)已知曲線上任意一點(diǎn)滿足方程,(1)求曲線的方程;(2)若直線與曲線在軸左、右兩側(cè)的交點(diǎn)分別是,且,求的最小值.20.(12分)兩人下棋,每局均無和棋且獲勝的概率為,某一天這兩個(gè)人要進(jìn)行一場(chǎng)五局三勝的比賽,勝者贏得2700元獎(jiǎng)金,(1)分別求以獲勝、以獲勝的概率;(2)若前兩局雙方戰(zhàn)成,后因?yàn)槠渌露K止比賽,間,怎么分獎(jiǎng)金才公平?21.(12分)已知函數(shù),.(1)討論的單調(diào)性;(2)當(dāng)時(shí),記在區(qū)間的最大值為M,最小值為N,求的取值范圍.22.(10分)如圖,在正方體中,為棱的中點(diǎn).求證:(1)平面;(2)求直線與平面所成角的大小.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】點(diǎn)P取端軸的一個(gè)端點(diǎn)時(shí),使得∠F1PF2是最大角.已知橢圓上不存在點(diǎn)P,使得∠F1PF2是鈍角,可得b≥c,利用離心率計(jì)算公式即可得出【詳解】∵點(diǎn)P取端軸的一個(gè)端點(diǎn)時(shí),使得∠F1PF2是最大角已知橢圓上不存在點(diǎn)P,使得∠F1PF2是鈍角,∴b≥c,可得a2﹣c2≥c2,可得:a∴故選C【點(diǎn)睛】本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.求橢圓的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個(gè)條件得到關(guān)于的齊次式,結(jié)合轉(zhuǎn)化為的齊次式,然后等式(不等式)兩邊分別除以或轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式)即可得(的取值范圍).2、D【解析】分別求出兩橢圓的長軸長、短軸長、離心率、焦距,即可判斷.【詳解】曲線表示焦點(diǎn)在軸上,長軸長為,短軸長為,離心率為,焦距為;曲線表示焦點(diǎn)在軸上,長軸長為,短軸長為,離心率為,焦距為.對(duì)照選項(xiàng)可知:焦距相等.故選:D.3、A【解析】設(shè)點(diǎn)與的坐標(biāo),進(jìn)而可表示與,再結(jié)合兩點(diǎn)在橢圓上,可得的值.【詳解】設(shè)點(diǎn)與,則,,所以,,又點(diǎn)與在橢圓上,所以,,作差可得,即,所以,故選:A.4、C【解析】根據(jù)拋物線的概念,可得準(zhǔn)線方程為5、B【解析】根據(jù)線線、線面、面面的位置關(guān)系,對(duì)選項(xiàng)進(jìn)行逐一判斷即可.【詳解】選項(xiàng)A.一條直線垂直于一平面內(nèi)的,兩條相交直線,則改直線與平面垂直則由,不能得出,故選項(xiàng)A不正確.選項(xiàng)B.,則正確,故選項(xiàng)B正確.選項(xiàng)C若,則與可能相交,可能異面,也可能平行,故選項(xiàng)C不正確.選項(xiàng)D.若,則與可能相交,可能平行,故選項(xiàng)D不正確.故選:B6、C【解析】由橢圓的定義得:,,結(jié)合條件可得,即可得答案.【詳解】由橢圓的定義得:,,又,,所以,由橢圓知,所以.故選:C7、C【解析】每天所走的里程構(gòu)成公比為的等比數(shù)列,設(shè)第一天走了里,利用等比數(shù)列基本量代換,直接求解.【詳解】由題意可知:每天所走的里程構(gòu)成公比為的等比數(shù)列.第一天走了里,第4天走了.故選:C8、C【解析】利用等比中項(xiàng)的定義可求得結(jié)果.【詳解】由題意可知,與的等比中項(xiàng)為.故選:C.9、C【解析】利用分層抽樣求出的值,進(jìn)而可求得高三被抽取的人數(shù).【詳解】由分層抽樣可得,可得,設(shè)高三所抽取的人數(shù)為,則,解得.故選:C.10、B【解析】先求出基本事件總數(shù),和至少有一輛與和車相鄰的對(duì)立事件是和都不與和車相鄰,由此能求出和至少有一輛與和車相鄰的概率【詳解】解:某公司門前有一排9個(gè)車位的停車場(chǎng),從左往右數(shù)第三個(gè),第七個(gè)車位分別停著車和車,同時(shí)進(jìn)來,兩車,在,不相鄰的條件下,基本事件總數(shù),和至少有一輛與和車相鄰的對(duì)立事件是和都不與和車相鄰,和至少有一輛與和車相鄰的概率:故選:B11、A【解析】設(shè)七巧板正方形邊長為4,求出陰影部分的面積,再利用幾何概型概率公式計(jì)算作答.【詳解】設(shè)七巧板正方形邊長為4,則大陰影等腰三角形底邊長為4,底邊上的高為2,可得小正方形對(duì)角線長為2,小正方形邊長為,小陰影等腰直角三角形腰長為,小白色等腰直角三角形底邊長為2,則左上角陰影等腰直角三角形腰長為2,因此,圖中陰影部分面積,而七巧板正方形面積,于是得七巧板中白色部分面積為,所以在此正方形中隨機(jī)地取一點(diǎn),則該點(diǎn)恰好取自白色部分的概率為.故選:A12、C【解析】先求出,然后根據(jù)復(fù)數(shù)的模求解即可【詳解】,,則,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】過作,交于點(diǎn),作,交于點(diǎn),由向量共線定理可得;再由角平分線性質(zhì)定理和雙曲線的定義、結(jié)合余弦定理和離心率公式,可得所求值【詳解】解:過作交于點(diǎn),作交于點(diǎn),由,得,由角平分線定理;因?yàn)闉榈闹悬c(diǎn),所以,由雙曲線的定義,,所以,,,在中,由余弦定理,所以.故答案為:;.【點(diǎn)睛】本題考查雙曲線的定義、方程和性質(zhì),以及角平分線的性質(zhì)定理和余弦定理的運(yùn)用,考查方程思想和運(yùn)算能力,屬于中檔題14、±8【解析】解析由G2=4×16=64得G=±8.答案±815、##0.5【解析】根據(jù)兩直線平行可得,,即可求出【詳解】依題可得,,解得故答案為:16、930【解析】當(dāng)為偶數(shù)時(shí),,所以數(shù)列前60項(xiàng)中偶數(shù)項(xiàng)的和,當(dāng)為奇數(shù)時(shí),,因此數(shù)列是以1為首項(xiàng),公差為2等差數(shù)列,前60項(xiàng)中奇數(shù)項(xiàng)的和為,所以.考點(diǎn):遞推數(shù)列、等差數(shù)列.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),.(2)5.【解析】(1)根據(jù)數(shù)列的遞推公式探求出其項(xiàng)間關(guān)系,由此求出的公比,進(jìn)而求得,的通項(xiàng)公式.(2)利用(1)的結(jié)論結(jié)合錯(cuò)位相減法求出,再將不等式變形,經(jīng)推理計(jì)算得解.【小問1詳解】解:設(shè)正項(xiàng)等比數(shù)列的公比為,當(dāng)時(shí),,即,則有,即,而,解得,又,則,所以,所以數(shù)列,的通項(xiàng)公式分別為:,.【小問2詳解】解:由(1)知,,則,則,兩式相減得:于是得,由得:,即,令,,顯然,,,,,,由,解得,即數(shù)列在時(shí)是遞增的,于是得當(dāng)時(shí),即,,則,所以不等式成立的n的最小值是5.18、(1)(2)【解析】(1)直接利用等比數(shù)列的求和公式求解即可,(2)由已知條件結(jié)合等比數(shù)的性質(zhì)可得,從而可求得答案,或直接利用等比數(shù)列的求和公式化簡求解【小問1詳解】.【小問2詳解】方法1:.∴.方法2:,整理得:又19、(1)(2)8【解析】(1)根據(jù)雙曲線的定義即可得出答案;(2)可設(shè)直線的方程為,則直線的方程為,由,求得,同理求得,從而可求得的值,再結(jié)合基本不等式即可得出答案.【小問1詳解】解:設(shè),則,等價(jià)于,曲線為以為焦點(diǎn)的雙曲線,且實(shí)軸長為2,焦距為,故曲線的方程為:;【小問2詳解】解:由題意可得直線的斜率存在且不為0,可設(shè)直線的方程為,則直線的方程為,由,得,所以,同理可得,,所以,,當(dāng)且僅當(dāng)時(shí)取等號(hào),所以當(dāng)時(shí),取得最小值8.20、(1)以獲勝、以獲勝的概率分別是;(2)分給分別元,元.【解析】(1)以獲勝、以獲勝,則分別要連勝三局,前三局勝兩局輸一局,第四局勝利;(2)求出若兩局之后正常結(jié)束比賽時(shí),的勝率,按照勝率分獎(jiǎng)金.【小問1詳解】設(shè)以獲勝、以獲勝的事件分別為,依題意要想獲勝,必須從第一局開始連勝局,;要想獲勝,則前局只能勝局,且第局勝利,故概率;【小問2詳解】設(shè)前兩局雙方戰(zhàn)成后勝,勝的事件分別為.若勝,則可能連勝局,或者局只勝場(chǎng),第局勝,故概率;由于兩人比賽沒有和局,獲勝的概率為,則獲勝的概率為,若勝,則可能連勝局,或者局只勝場(chǎng),第局勝,故概率.故獎(jiǎng)金應(yīng)分給元,分給元.21、(1)答案見解析;(2).【解析】(1)求得,對(duì)參數(shù)進(jìn)行分類討論,根據(jù)導(dǎo)函數(shù)函數(shù)值的正負(fù)即可判斷的單調(diào)性;(2)根據(jù)(1)中所求,求得,以及,再求其取值范圍即可.【小問1詳解】因?yàn)?,故可得,令,可得或;?dāng)時(shí),,此時(shí)在上單調(diào)遞增;當(dāng)時(shí),當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增.綜上所述:當(dāng)時(shí),在上單調(diào)遞增;當(dāng)時(shí),和單調(diào)遞增,在單調(diào)遞減;當(dāng)時(shí),在和單調(diào)遞增,在單調(diào)遞減.【小問2詳解】由(1)可知:當(dāng)時(shí),在單調(diào)遞減,在單調(diào)遞增又,,故在單調(diào)遞減,在單調(diào)遞增.則的最小值;又,當(dāng)時(shí),的最大值,此時(shí);當(dāng)時(shí),的最大值,此時(shí),令,則,所以在上單調(diào)遞減,所以,所以;所以的取值范圍為.22、(1)證明見解析;(2).【解析】(1)連接,交于,連接,推導(dǎo)出,由此能證明平面.(2)以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,利用向量法能求出直線與平面所成角的大小.【詳解】(1)證明:連接,交于,連接,∵在正方體中,是正方形,∴是中點(diǎn),∵為棱的中點(diǎn),∴,∵平面,平面,∴平面
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年種植技術(shù)員資格真題及答案
- 沉井施工方法
- 2025重癥醫(yī)學(xué)習(xí)題及答案
- 2025年工業(yè)機(jī)器人技術(shù)專業(yè)《工業(yè)機(jī)器人系統(tǒng)集成》專項(xiàng)訓(xùn)練試題及答案
- 2025年人工智能的發(fā)展與應(yīng)用知識(shí)試卷及答案
- 2025年人工智能應(yīng)用(自然語言處理)綜合測(cè)試試卷及答案
- 三級(jí)安全教育培訓(xùn)試題含答案(班組級(jí))
- 2025年三級(jí)樂理考試題及答案
- 建設(shè)工程施工合同糾紛要素式起訴狀模板多場(chǎng)景適用
- 銷售技巧2026年客戶轉(zhuǎn)化
- 2026年吉林司法警官職業(yè)學(xué)院單招職業(yè)技能考試備考試題帶答案解析
- 2025內(nèi)蒙古潤蒙能源有限公司招聘22人考試題庫附答案解析(奪冠)
- 2026年國家電網(wǎng)招聘之電網(wǎng)計(jì)算機(jī)考試題庫500道有答案
- 年味課件教學(xué)課件
- 中國臨床腫瘤學(xué)會(huì)(csco)胃癌診療指南2025
- 廣東省廣州市2025年上學(xué)期八年級(jí)數(shù)學(xué)期末考試試卷附答案
- 疑難病例討論制度落實(shí)常見問題與改進(jìn)建議
- 手機(jī)鋪貨協(xié)議書
- 2025年新能源停車場(chǎng)建設(shè)項(xiàng)目可行性研究報(bào)告
- 2025年物業(yè)管理中心工作總結(jié)及2026年工作計(jì)劃
- 創(chuàng)傷性脾破裂的護(hù)理
評(píng)論
0/150
提交評(píng)論