版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
山西省臨汾市翼城校2026屆高二上數(shù)學(xué)期末檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若橢圓的弦恰好被點(diǎn)平分,則所在的直線方程為()A. B.C. D.2.平面上動點(diǎn)到點(diǎn)的距離與它到直線的距離之比為,則動點(diǎn)的軌跡是()A.雙曲線 B.拋物線C.橢圓 D.圓3.動點(diǎn)P,Q分別在拋物線和圓上,則的最小值為()A. B.C. D.4.設(shè)等差數(shù)列的前項(xiàng)和為,若,則的值為()A.28 B.39C.56 D.1175.若向量,,,則()A. B.C. D.6.已知等差數(shù)列,若,,則()A.1 B.C. D.37.已知數(shù)列的通項(xiàng)公式為,其前項(xiàng)和為,則滿足的的最小值為()A.30 B.31C.32 D.338.已知向量,若,則()A. B.5C.4 D.9.曲線上的點(diǎn)到直線的最短距離是()A. B.C. D.110.“”是“直線與直線互相垂直”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件11.如圖,已知雙曲線的左右焦點(diǎn)分別為、,,是雙曲線右支上的一點(diǎn),,直線與軸交于點(diǎn),的內(nèi)切圓半徑為,則雙曲線的離心率是()A. B.C. D.12.已知是數(shù)列的前項(xiàng)和,,則數(shù)列是()A.公比為3的等比數(shù)列 B.公差為3的等差數(shù)列C.公比為的等比數(shù)列 D.既非等差數(shù)列,也非等比數(shù)列二、填空題:本題共4小題,每小題5分,共20分。13.若,則與向量同方向的單位向量的坐標(biāo)為____________.14.?dāng)?shù)列中,,則______15.已知直線與垂直,則m的值為______16.若正數(shù)x、y滿足,則的最小值等于________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)從橢圓上一點(diǎn)P向x軸作垂線,垂足恰為左焦點(diǎn),A是橢圓C與x軸正半軸的交點(diǎn),直線AP的斜率為,若橢圓長軸長為8(1)求橢圓C的方程;(2)點(diǎn)Q為橢圓上任意一點(diǎn),求面積的最大值18.(12分)已知,,分別為三個內(nèi)角,,的對邊,.(Ⅰ)求;(Ⅱ)若=2,的面積為,求,.19.(12分)如圖,在多面體ABCEF中,和均為等邊三角形,D是AC的中點(diǎn),(1)證明:(2)若平面平面ACE,求二面角余弦值.20.(12分)已知拋物線:的焦點(diǎn)為,直線與拋物線在第一象限的交點(diǎn)為,且(1)求拋物線的方程;(2)經(jīng)過焦點(diǎn)作互相垂直的兩條直線,,與拋物線相交于,兩點(diǎn),與拋物線相交于,兩點(diǎn).若,分別是線段,的中點(diǎn),求的最小值21.(12分)已知數(shù)列滿足,,且成等比數(shù)列(1)求的值和的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和22.(10分)已知橢圓過點(diǎn),且離心率(1)求橢圓的方程;(2)設(shè)點(diǎn)為橢圓的左焦點(diǎn),點(diǎn),過點(diǎn)作的垂線交橢圓于點(diǎn),,連接與交于點(diǎn)①若,求;②求的值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】判斷點(diǎn)M與橢圓的位置關(guān)系,再借助點(diǎn)差法求出直線AB的斜率即可計(jì)算作答.【詳解】顯然點(diǎn)橢圓內(nèi),設(shè)點(diǎn),依題意,,兩式相減得:,而弦恰好被點(diǎn)平分,即,則直線AB的斜率,直線AB:,即,所以所在的直線方程為.故選:D2、A【解析】設(shè)點(diǎn),利用距離公式化簡可得出點(diǎn)的軌跡方程,即可得出動點(diǎn)的軌跡圖形.【詳解】設(shè)點(diǎn),由題意可得,化簡可得,即,曲線為反比例函數(shù)圖象,故動點(diǎn)的軌跡是雙曲線.故選:A.3、B【解析】設(shè),根據(jù)兩點(diǎn)間距離公式,先求得P到圓心的最小距離,根據(jù)圓的幾何性質(zhì),即可得答案.【詳解】設(shè),圓化簡為,即圓心為(0,4),半徑為,所以點(diǎn)P到圓心的距離,令,則,令,,為開口向上,對稱軸為的拋物線,所以的最小值為,所以,所以的最小值為.故選:B4、B【解析】由已知結(jié)合等差數(shù)列的求和公式及等差數(shù)列的性質(zhì)即可求解.【詳解】因?yàn)榈炔顢?shù)列中,,則.故選:B.5、A【解析】根據(jù)向量垂直得到方程,求出的值.【詳解】由題意得:,解得:.故選:A6、C【解析】利用等差數(shù)列的通項(xiàng)公式進(jìn)行求解.【詳解】設(shè)等差數(shù)列的公差為,因?yàn)?,,所以,解?故選:C.7、C【解析】由條件可得得出,再由解出的范圍,得出答案.【詳解】由,則由,即,即,所以所以滿足的的最小值為為32故選:C8、B【解析】根據(jù)向量垂直列方程,化簡求得.【詳解】由于,所以.故選:B9、B【解析】先求與平行且與相切的切線切點(diǎn),再根據(jù)點(diǎn)到直線距離公式得結(jié)果.【詳解】設(shè)與平行的直線與相切,則切線斜率k=1,∵∴,由,得當(dāng)時,即切點(diǎn)坐標(biāo)為P(1,0),則點(diǎn)(1,0)到直線的距離就是線上的點(diǎn)到直線的最短距離,∴點(diǎn)(1,0)到直線的距離為:,∴曲線上的點(diǎn)到直線l:的距離的最小值為.故選:B10、A【解析】根據(jù)直線垂直求出的范圍即可得出.【詳解】由直線垂直可得,解得或1,所以“”是“直線與直線互相垂直”的充分不必要條件.故選:A.11、D【解析】根據(jù)給定條件結(jié)合直角三角形內(nèi)切圓半徑與邊長的關(guān)系求出雙曲線實(shí)半軸長a,再利用離心率公式計(jì)算作答.【詳解】依題意,,的內(nèi)切圓半徑,由直角三角形內(nèi)切圓性質(zhì)知:,由雙曲線對稱性知,,于是得,即,又雙曲線半焦距c=2,所以雙曲線的離心率.故選:D【點(diǎn)睛】結(jié)論點(diǎn)睛:二直角邊長為a,b,斜邊長為c的直角三角形內(nèi)切圓半徑.12、D【解析】由得,然后利用與的關(guān)系即可求出【詳解】因?yàn)?,所以所以?dāng)時,時,所以故數(shù)列既非等差數(shù)列,也非等比數(shù)列故選:D【點(diǎn)睛】要注意由求要分兩步:1.時,2.時.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由空間向量的模的計(jì)算求得向量的模,再由單位向量的定義求得答案.【詳解】解:因?yàn)椋?,所以與向量同方向的單位向量的坐標(biāo)為,故答案為:.14、1【解析】根據(jù)可得,則,所以可得數(shù)列是以6為周期周期數(shù)列,再由計(jì)算出的值,再利用對數(shù)的運(yùn)算性質(zhì)可求得結(jié)果【詳解】因?yàn)椋?,所以,所以?shù)列是以6為周期的周期數(shù)列,因?yàn)椋?,所以,所以,所以所以,故答案為?15、0或-9##-9或0【解析】根據(jù)給定條件利用兩直線互相垂直的性質(zhì)列式計(jì)算即得.【詳解】因直線與垂直,則有,解得或,所以m的值為0或-9.故答案為:0或-916、9【解析】把要求的式子變形為,利用基本不等式即可得結(jié)果.【詳解】因?yàn)?,所以,?dāng)且僅當(dāng)時取等號,故答案為.【點(diǎn)睛】本題主要考查利用基本不等式求最值,屬于難題.利用基本不等式求最值時,一定要正確理解和掌握“一正,二定,三相等”的內(nèi)涵:一正是,首先要判斷參數(shù)是否為正;二定是,其次要看和或積是否為定值(和定積最大,積定和最?。蝗嗟仁?,最后一定要驗(yàn)證等號能否成立(主要注意兩點(diǎn),一是相等時參數(shù)否在定義域內(nèi),二是多次用或時等號能否同時成立).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)18【解析】(1)易得,,進(jìn)而有,再結(jié)合已知即可求解;(2)由(1)易得直線AP的方程為,,設(shè)與直線AP平行的直線方程為,由題意,當(dāng)該直線與橢圓相切時,記與AP距離比較遠(yuǎn)的直線與橢圓的切點(diǎn)為Q,此時的面積取得最大值,將代入橢圓方程,聯(lián)立即可得與AP距離比較遠(yuǎn)的切線方程,從而即可求解.【小問1詳解】解:由題意,將代入橢圓方程,得,又∵,∴,化簡得,解得,又,,所以,∴,∴橢圓的方程為;【小問2詳解】解:由(1)知,直線AP的方程為,即,設(shè)與直線AP平行的直線方程為,由題意,當(dāng)該直線與橢圓相切時,記與AP距離比較遠(yuǎn)的直線與橢圓的切點(diǎn)為Q,此時的面積取得最大值,將代入橢圓方程,化簡可得,由,即,解得,所以與AP距離比較遠(yuǎn)的切線方程,因?yàn)榕c之間的距離,又,所以的面積的最大值為18、(1)(2)=2【解析】(Ⅰ)由及正弦定理得由于,所以,又,故.(Ⅱ)的面積==,故=4,而故=8,解得=219、(1)證明見解析(2)【解析】(1)根據(jù)等腰三角形三線合一的性質(zhì)得到、,即可得到平面,再根據(jù),即可得證;(2)由面面垂直的性質(zhì)得到平面,建立如圖所示空間直角坐標(biāo)系,設(shè),即可得到點(diǎn),,的坐標(biāo),最后利用空間向量法求出二面角的余弦值;【小問1詳解】證明:連接DE因?yàn)?,且D為AC的中點(diǎn),所以因?yàn)?,且D為AC的中點(diǎn),所以因?yàn)槠矫鍮DE,平面BDE,且,所以平面因?yàn)?,所以平面BDE,所以【小問2詳解】解:由(1)可知因?yàn)槠矫嫫矫?,平面平面,平面,所以平面,所以DC,DB,DE兩兩垂直以D為原點(diǎn),分別以,,的方向?yàn)閤,y,z軸的正方向,建立如圖所示的空間直角坐標(biāo)系設(shè).則,,.從而,設(shè)平面BCE的法向量為,則令,得平面ABC的一個法向量為設(shè)二面角為,由圖可知為銳角,則20、(1);(2)8.【解析】(1)寫出拋物線E的準(zhǔn)線,利用拋物線定義求出p即可作答.(2)由(1)求出焦點(diǎn)坐標(biāo),設(shè)出直線的方程,并與拋物線E的方程聯(lián)立,由此求出C點(diǎn)坐標(biāo),同理可得D點(diǎn)坐標(biāo),列式計(jì)算作答.小問1詳解】拋物線:的準(zhǔn)線方程為:,由拋物線定義得:,解得,所以拋物線的方程為:.【小問2詳解】由(1)知,點(diǎn),顯然直線,的斜率都存在且不為0,設(shè)直線斜率為,則的斜率為,直線的方程為:,由消去y并整理得,設(shè),則,于得線段PQ中點(diǎn),同理得,則,當(dāng)且僅當(dāng),即時取“=”,所以的最小值是8.【點(diǎn)睛】結(jié)論點(diǎn)睛:拋物線方程中,字母p的幾何意義是拋物線的焦點(diǎn)F到準(zhǔn)線的距離,等于焦點(diǎn)到拋物線頂點(diǎn)的距離21、(1);;(2)【解析】(1)由于,所以可得,再由成等比數(shù)列,列方程可求出,從而可求出的通項(xiàng)公式;(2)由(1)可得,然后利用錯位相減法求【詳解】解:(1)數(shù)列{an}滿足,所以,所以a2+a3=a1+a2+d,由于a1=1,a2=1,所以a2+a3=2+d,a8+a9=2+7d,且a1,a2+a3,a8+a9成等比數(shù)列,所以,整理得d=1或2(1舍去)故an+2=an+2,所以n奇數(shù)時,an=n,n為偶數(shù)時,an=n﹣1所以數(shù)列{an}的通項(xiàng)公式為(2)由于,所以所以T2n=b1+b2+...+b2n=﹣20×12+20×22﹣22×32+22×42+...+[﹣22n﹣2?(2n﹣1)2]+22n﹣2?(2n)2,=20×(22﹣12)+22×(42﹣32)+...+22n﹣2?[(2n)2﹣(2n﹣1)2]=20×3+22×7+...+22n﹣2?(4n﹣1)①,所以,②,①﹣②得:﹣3T2n=20×3+22×4+...+22n﹣2×4﹣22n×(4n﹣1),=3+4×﹣22n×(4n﹣1),=,所以22、(1)(2)①,②【解析】(1)由題意得解方程組求出,從而可得橢圓的方程,(2)①由
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 染色師成果轉(zhuǎn)化模擬考核試卷含答案
- 道岔鉗工安全操作競賽考核試卷含答案
- 腳輪制作工安全風(fēng)險(xiǎn)水平考核試卷含答案
- 醬鹵肉制品加工工操作管理評優(yōu)考核試卷含答案
- 纖維調(diào)施膠干燥工安全培訓(xùn)模擬考核試卷含答案
- 2025年太陽能組件生產(chǎn)裝備項(xiàng)目合作計(jì)劃書
- 2025年鍍鉻板(卷)合作協(xié)議書
- 中國垃圾填埋場治理行業(yè)市場前景預(yù)測及投資價值評估分析報(bào)告
- 信息安全與加密教學(xué)課件
- 2025年青海省西寧市中考生物真題卷含答案解析
- 大數(shù)據(jù)安全技術(shù)與管理
- 2026年中小學(xué)校長校園安全管理培訓(xùn)考試題及答案
- 2025年山東建筑大學(xué)思想道德修養(yǎng)與法律基礎(chǔ)期末考試模擬題必考題
- 江西省贛州地區(qū)2023-2024學(xué)年七年級上學(xué)期期末英語試(含答案)
- 2025年香港滬江維多利亞筆試及答案
- 述職報(bào)告中醫(yī)
- 患者身份識別管理標(biāo)準(zhǔn)
- 松下Feeder維護(hù)保養(yǎng)教材
- 汽車融資貸款合同范本
- 碼頭租賃意向協(xié)議書
-
評論
0/150
提交評論