版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2026屆廣東名校三校聯(lián)考高二上數(shù)學(xué)期末統(tǒng)考模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在等差數(shù)列中,若,則()A.5 B.6C.7 D.82.已知數(shù)列的通項公式為,是數(shù)列的最小項,則實數(shù)的取值范圍是()A. B.C. D.3.在正三棱錐S?ABC中,M、N分別是棱SC、BC的中點,且,若側(cè)棱,則正三棱錐S?ABC外接球的表面積是()A. B.C. D.4.已知函數(shù),若對任意,都有成立,則a的取值范圍為()A. B.C. D.5.已知直線與圓相交于兩點,當(dāng)?shù)拿娣e最大時,的值是()A. B.C. D.6.以下四個命題中,正確的是()A.若,則三點共線B.C.為直角三角形的充要條件是D.若為空間的一個基底,則構(gòu)成空間的另一個基底7.2020年北京時間11月24日我國嫦娥五號探月飛行器成功發(fā)射.嫦娥五號是我國探月工程“繞、落、回”三步走的收官之戰(zhàn),經(jīng)歷發(fā)射入軌、地月轉(zhuǎn)移、近月制動、環(huán)月飛行、著陸下降、月面工作、月面上升、交會對接與樣品轉(zhuǎn)移、環(huán)月等待、月地轉(zhuǎn)移、再入回收等11個關(guān)鍵階段.在經(jīng)過交會對接與樣品轉(zhuǎn)移階段后,若嫦娥五號返回器在近月點(離月面最近的點)約為200公里,遠月點(離月面最遠的點)約為8600公里,以月球中心為一個焦點的橢圓形軌道上等待時間窗口和指令進行下一步動作,月球半徑約為1740公里,則此橢圓軌道的離心率約為()A.0.32 B.0.48C.0.68 D.0.828.雅言傳承文明,經(jīng)典浸潤人生.某市舉辦“中華經(jīng)典誦寫講大賽”,大賽分為四類:“誦讀中國”經(jīng)典誦讀大賽、“詩教中國”詩詞講解大賽、“筆墨中國”漢字書寫大賽、“印記中國”學(xué)生篆刻大賽.某人決定從這四類比賽中任選兩類參賽,則“誦讀中國”被選中的概率為()A. B.C. D.9.已知正實數(shù)x,y滿足4x+3y=4,則的最小值為()A. B.C. D.10.設(shè)雙曲線的實軸長為8,一條漸近線為,則雙曲線的方程為()A. B.C. D.11.方程表示橢圓的充分不必要條件可以是()A. B.C. D.12.若圓與圓相切,則的值為()A. B.C.或 D.或二、填空題:本題共4小題,每小題5分,共20分。13.在空間直角坐標系中,點關(guān)于原點的對稱點為點,則___________.14.已知函數(shù),則曲線在點處的切線方程為______15.直線與圓相交于A,B兩點,則的最小值為__________.16.直線過拋物線的焦點F,且與C交于A,B兩點,則___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)若在點處的切線與軸平行,求的值;(2)當(dāng)時,求證:;(3)若函數(shù)有兩個零點,求的取值范圍18.(12分)已知點P到點的距離比它到直線的距離小1.(1)求點P的軌跡方程;(2)點M,N在點P的軌跡上且位于x軸的兩側(cè),(其中O為坐標原點),求面積的最小值.19.(12分)已知函數(shù)(1)若在上單調(diào)遞減,求實數(shù)a的取值范圍(2)若是方程的兩個不相等的實數(shù)根,證明:20.(12分)北京、張家港2022年冬奧會申辦委員會在俄羅斯索契舉辦了發(fā)布會,某公司為了競標配套活動的相關(guān)代言,決定對旗下的某商品進行一次評估.該商品原來每件售價為25元,年銷售8萬件.(1)據(jù)市場調(diào)查,若價格每提高1元,銷售量將相應(yīng)減少2000件,要使銷售的總收入不低于原收入,該商品每件定價最多為多少元?(2)為了抓住申奧契機,擴大該商品的影響力,提高年銷售量.公司決定立即對該商品進行全面技術(shù)革新和營銷策略改革,并提高定價到x元.公司擬投入萬作為技改費用,投入50萬元作為固定宣傳費用,投入萬元作為浮動宣傳費用.試問:當(dāng)該商品改革后的銷售量a至少應(yīng)達到多少萬件時,才可能使改革后的銷售收入不低于原收入與總投入之和?并求出此時商品的每件定價.21.(12分)已知圓的圓心為,且圓經(jīng)過點(1)求圓的標準方程;(2)若圓:與圓恰有兩條公切線,求實數(shù)的取值范圍22.(10分)已知橢圓的右頂點為,上頂點為.離心率為,.(1)求橢圓的標準方程;(2)若,是橢圓上異于長軸端點的兩點(斜率不為0),已知直線,且,垂足為,垂足為,若,且的面積是面積的5倍,求面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由得出.【詳解】由可得,故選:B2、D【解析】利用最值的含義轉(zhuǎn)化為不等式恒成立問題解決即可【詳解】解:由題意可得,整理得,當(dāng)時,不等式化簡為恒成立,所以,當(dāng)時,不等式化簡為恒成立,所以,綜上,,所以實數(shù)的取值范圍是,故選:D3、A【解析】由題意推出平面,即平面,,將此三棱錐補成正方體,則它們有相同的外接球,正方體的對角線就是球的直徑,求出直徑即可求出球的體積【詳解】∵,分別為棱,的中點,∴,∵三棱錐為正棱錐,作平面,所以是底面正三角的中心,連接并延長交與點,∵底面是正三角形,,平面∴,,∵,平面,平面,∴平面,∵平面,∴,∴,又∵,而,且,平面,∴平面,∴平面,∴,因為S?ABC是正三棱錐。所以,以,,為從同一定點出發(fā)的正方體三條棱,將此三棱錐補成以正方體,則它們有相同的外接球,正方體的體對角線就是球的直徑,,所以.故選:A.4、C【解析】求出函數(shù)的導(dǎo)數(shù),再對給定不等式等價變形,分離參數(shù)借助均值不等式計算作答.【詳解】對函數(shù)求導(dǎo)得:,,,則,,而,當(dāng)且僅當(dāng),即時“=”,于是得,解得,所以a的取值范圍為.故選:C【點睛】關(guān)鍵點睛:涉及不等式恒成立問題,將給定不等式等價轉(zhuǎn)化,構(gòu)造函數(shù),利用函數(shù)思想是解決問題的關(guān)鍵.5、C【解析】利用點到直線的距離公式和弦長公式可以求出的面積是關(guān)于的一個式子,即可求出答案.【詳解】圓心到直線的距離,弦長為..當(dāng),即時,取得最大值.故選:C.6、D【解析】利用向量共線的推論可判斷A,利用數(shù)量積的定義可判斷B,利用充要條件的概念可判斷C,利用基底的概念可判斷D.【詳解】對于A,若,,所以三點不共線,故A錯誤;對于B,因為,故B錯誤;對于C,由可推出為直角三角形,由為直角三角形,推不出,所以為直角三角形的充分不必要條件是,故C錯誤;對于D,若為空間的一個基底,則不共面,若不能構(gòu)成空間的一個基底,設(shè),整理可得,即共面,與不共面矛盾,所以能構(gòu)成空間的另一個基底,故D正確.故選:D.7、C【解析】由題意可知,求出的值,從而可求出橢圓的離心率【詳解】解:由題意得,解得,所以離心率,故選:C8、B【解析】由已知條件得基本事件總數(shù)為種,符合條件的事件數(shù)為3中,由古典概型公式直接計算即可.【詳解】從四類比賽中選兩類參賽,共有種選擇,其中“誦讀中國”被選中的情況有3種,即“誦讀中國”和“詩教中國”,“誦讀中國”和“筆墨中國”,“誦讀中國”和“印記中國”,由古典概型公式可得,故選:.9、A【解析】將4x+3y=4變形為含2x+1和3y+2的等式,即2(2x+1)+(3y+2)=8,再由換元法、基本不等式換“1”的代換求解即可【詳解】由正實數(shù)x,y滿足4x+3y=4,可得2(2x+1)+(3y+2)=8,令a=2x+1,b=3y+2,可得2a+b=8,∴,即,當(dāng)且僅當(dāng)時取等號,∴的最小值為.故選:A10、D【解析】雙曲線的實軸長為,漸近線方程為,代入解析式即可得到結(jié)果.【詳解】雙曲線的實軸長為8,即,,漸近線方程為,進而得到雙曲線方程為.故選:D.11、D【解析】由“方程表示橢圓”可求得實數(shù)的取值范圍,結(jié)合充分不必要條件的定義可得出結(jié)論.【詳解】若方程表示橢圓,則,解得或.故方程表示橢圓的充分不必要條件可以是.故選:D.12、C【解析】分類討論:當(dāng)兩圓外切時,圓心距等于半徑之和;當(dāng)兩圓內(nèi)切時,圓心距等于半徑之差,即可求解.【詳解】圓的圓心為,半徑為,圓的圓心為,半徑為.①當(dāng)兩圓外切時,有,此時.②當(dāng)兩圓內(nèi)切時,有,此時.綜上,當(dāng)時兩圓外切;當(dāng)時兩圓內(nèi)切.故選:C【點睛】本題考查了圓與圓的位置關(guān)系,解答兩圓相切問題時易忽略兩圓相切包括內(nèi)切和外切兩種情況.解答時注意分類討論,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先利用關(guān)于原點對稱的點的坐標特征求出點,再利用空間兩點間的距離公式即可求.【詳解】因為B與關(guān)于原點對稱,故,所以.故答案為:.14、【解析】先求出,求出導(dǎo)函數(shù)及,進而求出切線方程.【詳解】∵,∴,又,∴在處的切線方程為,即故答案為:15、【解析】直線過定點,圓心,當(dāng)時,取得最小值,再由勾股定理即可求解.【詳解】由,得,由,得直線過定點,且在圓的內(nèi)部,由圓可得圓心,半徑,當(dāng)時,取得最小值,圓心與定點的距離為,則的最小值為.故答案為:.16、8【解析】由題意,求出,然后聯(lián)立直線與拋物線方程,由韋達定理及即可求解.【詳解】解:因為拋物線的焦點坐標為,又直線過拋物線的焦點F,所以,拋物線的方程為,由,得,所以,所以.故答案為:8.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析;(3).【解析】(1)由可求得實數(shù)的值;(2)利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,求得,即可證得結(jié)論成立;(3)分析可知在上存在唯一的極值點,且,可得出,構(gòu)造函數(shù),分析函數(shù)的單調(diào)性,求得的取值范圍,再構(gòu)造,分析函數(shù)的單調(diào)性,求出的范圍,即可得出的取值范圍.【小問1詳解】解:因為的定義域為,.由題意可得,解得.【小問2詳解】證明:當(dāng)時,,該函數(shù)的定義域為,,令,其中,則,故函數(shù)在上遞減,因為,,所以,存在,使得,則,且,當(dāng)時,,函數(shù)單調(diào)遞增,當(dāng)時,,函數(shù)單調(diào)遞減,所以,,所以,當(dāng)時,.【小問3詳解】解:函數(shù)的定義域為,.令,其中,則,所以,函數(shù)單調(diào)遞減,因為函數(shù)有兩個零點,等價于函數(shù)在上存在唯一的極值點,且為極大值點,且,即,所以,,令,其中,則,故函數(shù)在上單調(diào)遞增,又因為,由,可得,構(gòu)造函數(shù),其中,則,所以,函數(shù)在上單調(diào)遞增,故,因此,實數(shù)的取值范圍是.【點睛】方法點睛:利用導(dǎo)數(shù)證明不等式問題,方法如下:(1)直接構(gòu)造函數(shù)法:證明不等式(或)轉(zhuǎn)化為證明(或),進而構(gòu)造輔助函數(shù);(2)適當(dāng)放縮構(gòu)造法:一是根據(jù)已知條件適當(dāng)放縮;二是利用常見放縮結(jié)論;(3)構(gòu)造“形似”函數(shù),稍作變形再構(gòu)造,對原不等式同解變形,根據(jù)相似結(jié)構(gòu)構(gòu)造輔助函數(shù).18、(1);(2).【解析】(1)根據(jù)給定條件可得點P到點的距離等于它到直線的距離,再由拋物線定義即可得解.(2)由(1)設(shè)出點M,N的坐標,再結(jié)合給定條件及三角形面積定理列式,借助均值不等式計算作答.【小問1詳解】因點P到點的距離比它到直線的距離小1,顯然點P與F在直線l同側(cè),于是得點P到點的距離等于它到直線的距離,則點P的軌跡是以F為焦點,直線為準線的拋物線,所以點P的軌跡方程是.【小問2詳解】由(1)設(shè)點,,且,因,則,解得,S,當(dāng)且僅當(dāng),即時取“=”,所以面積的最小值為.【點睛】思路點睛:圓錐曲線中的幾何圖形面積范圍或最值問題,可以以直線的斜率、橫(縱)截距、圖形上動點的橫(縱)坐標為變量,建立函數(shù)關(guān)系求解作答.19、(1);(2)詳見解析【解析】(1)首先求函數(shù)的導(dǎo)數(shù),結(jié)合函數(shù)的導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,參變分離后,轉(zhuǎn)化為求函數(shù)的最值,即可求得實數(shù)的取值范圍;(2)將方程的實數(shù)根代入方程,再變形得到,利用分析法,轉(zhuǎn)化為證明,通過換元,構(gòu)造函數(shù),轉(zhuǎn)化為利用導(dǎo)數(shù)證明,恒成立.【小問1詳解】,,在上單調(diào)遞減,在上恒成立,即,即在,設(shè),,,當(dāng)時,,函數(shù)單調(diào)遞增,當(dāng)時,,函數(shù)單調(diào)遞減,所以函數(shù)的最大值是,所以;【小問2詳解】若是方程兩個不相等的實數(shù)根,即又2個不同實數(shù)根,且,,得,即,所以,不妨設(shè),則,要證明,只需證明,即證明,即證明,令,,令函數(shù),所以,所以函數(shù)在上單調(diào)遞減,當(dāng)時,,所以,,所以,即,即得【點睛】本題考查利用導(dǎo)數(shù)的單調(diào)性求參數(shù)的取值范圍,以及證明不等式,屬于難題,導(dǎo)數(shù)中的雙變量問題,往往采用分析法,轉(zhuǎn)化為函數(shù)與不等式的關(guān)系,通過構(gòu)造函數(shù),結(jié)合函數(shù)的導(dǎo)數(shù),即可證明.20、(1)40;(2)a至少達到10.2萬件時,才可能使改革后的銷售收入不低于原收入與總投入之和,此時該商品的每件定價為30元.【解析】(1)設(shè)每件定價為x元,可得提高價格后的銷售量,根據(jù)銷售的總收入不低于原收入,建立不等式,解不等式可得每件最高定價;(2)依題意,x>25時,不等式有解,等價于x>25時,有解,利用基本不等式,可以求得a.【詳解】(1)設(shè)每件定價為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 染色師成果轉(zhuǎn)化模擬考核試卷含答案
- 道岔鉗工安全操作競賽考核試卷含答案
- 腳輪制作工安全風(fēng)險水平考核試卷含答案
- 醬鹵肉制品加工工操作管理評優(yōu)考核試卷含答案
- 纖維調(diào)施膠干燥工安全培訓(xùn)模擬考核試卷含答案
- 2025年太陽能組件生產(chǎn)裝備項目合作計劃書
- 2025年鍍鉻板(卷)合作協(xié)議書
- 中國垃圾填埋場治理行業(yè)市場前景預(yù)測及投資價值評估分析報告
- 信息安全與加密教學(xué)課件
- 2025年青海省西寧市中考生物真題卷含答案解析
- 大數(shù)據(jù)安全技術(shù)與管理
- 2026年中小學(xué)校長校園安全管理培訓(xùn)考試題及答案
- 2025年山東建筑大學(xué)思想道德修養(yǎng)與法律基礎(chǔ)期末考試模擬題必考題
- 江西省贛州地區(qū)2023-2024學(xué)年七年級上學(xué)期期末英語試(含答案)
- 2025年香港滬江維多利亞筆試及答案
- 述職報告中醫(yī)
- 患者身份識別管理標準
- 松下Feeder維護保養(yǎng)教材
- 汽車融資貸款合同范本
- 碼頭租賃意向協(xié)議書
-
評論
0/150
提交評論