黑龍江省牡丹江市愛民區(qū)牡丹江一中2026屆高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第1頁
黑龍江省牡丹江市愛民區(qū)牡丹江一中2026屆高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第2頁
黑龍江省牡丹江市愛民區(qū)牡丹江一中2026屆高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第3頁
黑龍江省牡丹江市愛民區(qū)牡丹江一中2026屆高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第4頁
黑龍江省牡丹江市愛民區(qū)牡丹江一中2026屆高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

黑龍江省牡丹江市愛民區(qū)牡丹江一中2026屆高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在正方體中,下列幾種說法不正確的是A. B.B1C與BD所成的角為60°C.二面角的平面角為 D.與平面ABCD所成的角為2.已知等差數(shù)列滿足,則其前10項(xiàng)之和為()A.140 B.280C.68 D.563.若數(shù)列的前n項(xiàng)和(n∈N*),則=()A.20 B.30C.40 D.504.設(shè)異面直線、的方向向量分別為,,則異面直線與所成角的大小為()A. B.C. D.5.設(shè)為等差數(shù)列的前項(xiàng)和,,,則A.-6 B.-4C.-2 D.26.已知函數(shù).若數(shù)列的前n項(xiàng)和為,且滿足,,則的最大值為()A.9 B.12C.20 D.7.4位同學(xué)報(bào)名參加四個(gè)課外活動(dòng)小組,每位同學(xué)限報(bào)其中的一個(gè)小組,則不同的報(bào)名方法共有()A.24種 B.81種C.64種 D.256種8.橢圓的長軸長為()A. B.C. D.9.一道數(shù)學(xué)試題,甲、乙兩位同學(xué)獨(dú)立完成,設(shè)命題是“甲同學(xué)解出試題”,命題是“乙同學(xué)解出試題”,則命題“至少一位同學(xué)解出試題”可表示為()A. B.C. D.10.已知橢圓與圓在第二象限的交點(diǎn)是點(diǎn),是橢圓的左焦點(diǎn),為坐標(biāo)原點(diǎn),到直線的距離是,則橢圓的離心率是()A. B.C. D.11.已知函數(shù)的導(dǎo)函數(shù)為,且滿足,則()A. B.C. D.12.在等比數(shù)列中,,則等于()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.直線過拋物線的焦點(diǎn)F,且與C交于A,B兩點(diǎn),則___________.14.曲線在點(diǎn)處的切線方程為_______.15.已知圓,圓與軸相切,與圓外切,且圓心在直線上,則圓的標(biāo)準(zhǔn)方程為________16.已知斜率為1的直線經(jīng)過橢圓的左焦點(diǎn),且與橢圓交于,兩點(diǎn),若橢圓上存在點(diǎn),使得的重心恰好是坐標(biāo)原點(diǎn),則橢圓的離心率______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)橢圓的左、右焦點(diǎn)分別為,.點(diǎn)滿足.(1)求橢圓的離心率;(2)設(shè)直線與橢圓相交于,兩點(diǎn),若直線與圓相交于,兩點(diǎn),且,求橢圓的方程.18.(12分)已知,對于有限集,令表示集合中元素的個(gè)數(shù).例如:當(dāng)時(shí),,(1)當(dāng)時(shí),請直接寫出集合的子集的個(gè)數(shù);(2)當(dāng)時(shí),,都是集合的子集(,可以相同),并且.求滿足條件的有序集合對的個(gè)數(shù);(3)假設(shè)存在集合、具有以下性質(zhì):將1,1,2,2,··,,.這個(gè)整數(shù)按某種次序排成一列,使得在這個(gè)序列中,對于任意,與之間恰好排列個(gè)整數(shù).證明:是4的倍數(shù)19.(12分)(1)敘述正弦定理;(2)在△中,應(yīng)用正弦定理判斷“”是“”成立的什么條件,并加以證明.20.(12分)已知直線與直線交于點(diǎn).(1)求過點(diǎn)且平行于直線的直線的方程,并求出兩平行直線間的距離;(2)求過點(diǎn)并且在兩坐標(biāo)軸上的截距互為相反數(shù)的直線的方程.21.(12分)已知圓.(1)若直線與圓相交于兩點(diǎn),弦的中點(diǎn)為,求直線的方程;(2)若斜率為1的直線被圓截得的弦為,以為直徑的圓經(jīng)過圓的圓心,求直線的方程.22.(10分)某種機(jī)械設(shè)備隨著使用年限的增加,它的使用功能逐漸減退,使用價(jià)值逐年減少,通常把它使用價(jià)值逐年減少的“量”換算成費(fèi)用,稱之為“失效費(fèi)”.某種機(jī)械設(shè)備的使用年限(單位:年)與失效費(fèi)(單位:萬元)的統(tǒng)計(jì)數(shù)據(jù)如下表所示:使用年限(單位:年)1234567失效費(fèi)(單位:萬元)2.903.303.604.404.805.205.90(1)由上表數(shù)據(jù)可知,可用線性回歸模型擬合與關(guān)系.請用相關(guān)系數(shù)加以說明;(精確到0.01)(2)求出關(guān)于的線性回歸方程,并估算該種機(jī)械設(shè)備使用8年的失效費(fèi)參考公式:相關(guān)系數(shù)線性回歸方程中斜率和截距最小二乘估計(jì)計(jì)算公式:,參考數(shù)據(jù):,,

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】在正方體中,利用線面關(guān)系逐一判斷即可.【詳解】解:對于A,連接AC,則AC⊥BD,A1C1∥AC,∴A1C1⊥BD,故A正確;對于B,∵B1C∥D,即B1C與BD所成的角為∠DB,連接△DB為等邊三角形,∴B1C與BD所成的角為60°,故B正確;對于C,∵BC⊥平面A1ABB1,A1B?平面A1ABB1,∴BC⊥A1B,∵AB⊥BC,平面A1BC∩平面BCD=BC,A1B?平面A1BC,AB?平面BCD,∴∠ABA1是二面角A1﹣BC﹣D的平面角,∵△A1AB是等腰直角三角形,∴∠ABA1=45°,故C正確;對于D,∵C1C⊥平面ABCD,AC1∩平面ABCD=A,∴∠C1AC是AC1與平面ABCD所成的角,∵AC≠C1C,∴∠C1AC≠45°,故D錯(cuò)誤故選D【點(diǎn)睛】本題考查了線面的空間位置關(guān)系及空間角,做出圖形分析是關(guān)鍵,考查推理能力與空間想象能力2、A【解析】根據(jù)等差數(shù)列的性質(zhì),可得,結(jié)合等差數(shù)列的求和公式,即可求解.【詳解】由題意,等差數(shù)列滿足,根據(jù)等差數(shù)列的性質(zhì),可得,所以數(shù)列的前10項(xiàng)和為.故選:A.3、B【解析】由前項(xiàng)和公式直接作差可得.【詳解】數(shù)列的前n項(xiàng)和(n∈N*),所以.故選:B.4、C【解析】利用空間向量夾角的公式直接求解.【詳解】,,,.由異面直線所成角的范圍為,故異面直線與所成的角為.故選:C5、A【解析】由已知得解得故選A考點(diǎn):等差數(shù)列的通項(xiàng)公式和前項(xiàng)和公式6、C【解析】先得到及遞推公式,要想最大,則分兩種情況,負(fù)數(shù)且最小或?yàn)檎龜?shù)且最大,進(jìn)而求出最大值.【詳解】①,當(dāng)時(shí),,當(dāng)時(shí),②,所以①-②得:,整理得:,所以,或,當(dāng)是公差為2的等差數(shù)列,且時(shí),最小,最大,此時(shí),所以,此時(shí);當(dāng)且是公差為2的等差數(shù)列時(shí),最大,最大,此時(shí),所以,此時(shí)綜上:的最大值為20故選:C【點(diǎn)睛】方法點(diǎn)睛:數(shù)列相關(guān)的最值求解,要結(jié)合題干條件,使用不等式放縮,函數(shù)單調(diào)性或?qū)Ш瘮?shù)等進(jìn)行求解.7、D【解析】利用分步乘法計(jì)數(shù)原理進(jìn)行計(jì)算.【詳解】每位同學(xué)均有四種選擇,故不同的報(bào)名方法有種.故選:D8、D【解析】由橢圓方程可直接求得.【詳解】由橢圓方程知:,長軸長為.故選:D.9、D【解析】根據(jù)“或命題”的定義即可求得答案.【詳解】“至少一位同學(xué)解出試題”的意思是“甲同學(xué)解出試題,或乙同學(xué)解出試題”.故選:D.10、B【解析】連接,得到,作,求得,利用橢圓的定義,可求得,在直角中,利用勾股定理,整理的,即可求解橢圓的離心率.【詳解】如圖所示,連接,因?yàn)閳A,可得,過點(diǎn)作,可得,且,由橢圓的定義,可得,所以,在直角中,可得,即,整理得,兩側(cè)同除,可得,解得或,又因?yàn)?,所以橢圓的離心率為.故選:B【點(diǎn)睛】本題主要考查了橢圓的定義,直角三角形的勾股定理,以及橢圓的離心率的求解,其中解答中熟記橢圓的定義,結(jié)合直角三角形的勾股定理,列出關(guān)于的方程是解答的關(guān)鍵,著重考查了推理與計(jì)算能力,屬于基礎(chǔ)題.11、C【解析】求出導(dǎo)數(shù)后,把x=e代入,即可求解.【詳解】因?yàn)?,所以,解得故選:C12、C【解析】根據(jù),然后與,可得,最后簡單計(jì)算,可得結(jié)果.【詳解】在等比數(shù)列中,由所以,又,所以所以故選:C【點(diǎn)睛】本題考查等比數(shù)列的性質(zhì),重在計(jì)算,當(dāng),在等差數(shù)列中有,在等比數(shù)列中,靈活應(yīng)用,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、8【解析】由題意,求出,然后聯(lián)立直線與拋物線方程,由韋達(dá)定理及即可求解.【詳解】解:因?yàn)閽佄锞€的焦點(diǎn)坐標(biāo)為,又直線過拋物線的焦點(diǎn)F,所以,拋物線的方程為,由,得,所以,所以.故答案為:8.14、.【解析】由求導(dǎo)公式求出導(dǎo)數(shù),再把代入求出切線的斜率,代入點(diǎn)式方程化為一般式即可.【詳解】由題意得,∴在點(diǎn)處的切線的斜率是,則在點(diǎn)處的切線方程是,即.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義.注意區(qū)分“在某點(diǎn)處的切線”與“過某點(diǎn)的切線”,前者“某點(diǎn)”是切點(diǎn),后者“某點(diǎn)”不一定是切點(diǎn).15、【解析】根據(jù)題干求得圓的圓心及半徑,再利用圓與軸相切,與圓外切,且圓心在直線上確定圓的圓心及半徑.【詳解】圓的標(biāo)準(zhǔn)方程為,所以圓心,半徑為由圓心在直線上,可設(shè)因?yàn)榕c軸相切,與圓外切,于是圓的半徑為,從而,解得因此,圓的標(biāo)準(zhǔn)方程為故答案為:【點(diǎn)睛】判斷兩圓的位置關(guān)系常用幾何法,即用兩圓圓心距與兩圓半徑和與差之間的關(guān)系,一般不采用代數(shù)法.兩圓相切注意討論內(nèi)切外切兩種情況.16、【解析】設(shè)點(diǎn),,坐標(biāo)分別為,則根據(jù)題意有,分別將點(diǎn),,的坐標(biāo)代入橢圓方程得,然后聯(lián)立直線與橢圓方程,利用韋達(dá)定理得到和的值,代入得到關(guān)于的齊次式,然后解出離心率.【詳解】設(shè),,坐標(biāo)分別為,因?yàn)榈闹匦那『檬亲鴺?biāo)原點(diǎn),則,則,代入橢圓方程可得,其中,所以……①因?yàn)橹本€的斜率為,且過左焦點(diǎn),則的方程為:,聯(lián)立方程消去可得:,所以,……②所以……③,將②③代入①得,從而.故答案為:【點(diǎn)睛】本題考查橢圓的離心率求解問題,難度較大.解答時(shí),注意,,三點(diǎn)坐標(biāo)之間的關(guān)系,注意韋達(dá)定理在解題中的運(yùn)用.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)由及兩點(diǎn)間距離公式可建立等式,消去b,即可求解出,主要兩個(gè)根的的要舍去;(2)聯(lián)立直線和橢圓的方程,利用弦長公式求得,再利用幾何關(guān)系求得,代入,可解得c,從而得到橢圓的方程.【詳解】(1)設(shè),,因?yàn)?,所以,整理得,得(舍),或,所以;?)由(1)知,,可得橢圓方程為,直線的方程為,A,B兩點(diǎn)的坐標(biāo)滿足方程組為,消去y并整理,得,解得:,,得方程組的解和,不妨設(shè):,,所以,于是,圓心到直線的距離為,因?yàn)椋?,整理得:,得(舍),或,所以橢圓方程為:.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題考查求橢圓的離心率解題關(guān)鍵是找到關(guān)于a,b,c的等量關(guān)系,第二問的關(guān)鍵是聯(lián)立直線與橢圓方程求出交點(diǎn)坐標(biāo),利用距離公式建立等量關(guān)系,求出c是求出橢圓方程的關(guān)鍵.18、(1)8(2)454(3)證明見詳解【解析】(1)n元集合的直接個(gè)數(shù)為可得;(2)由已知結(jié)合可得,或,然后可得集合的包含關(guān)系可解;(3)根據(jù)每兩個(gè)相同整數(shù)之間的整數(shù)個(gè)數(shù)之和與總的數(shù)字個(gè)數(shù)之間的關(guān)系可證.【小問1詳解】當(dāng)時(shí),集合的子集個(gè)數(shù)為【小問2詳解】易知,又,所以,即,得,或,所以或1)若,則滿足條件的集合對共有,2)若,同理,滿足條件集合對共有2433)當(dāng)A=B時(shí),滿足條件的集合對共有所以,滿足條件集合對共243+243-32=454個(gè).【小問3詳解】記,則1,1,2,2,··,,共2n個(gè)正整數(shù),將這2n個(gè)正整數(shù)按照要求排列時(shí),需在1和1中間放入1個(gè)數(shù),在2和2中間放入2個(gè)數(shù),…,在n和n中間放入n個(gè)數(shù),共放入了個(gè)數(shù),由于排列完成后共有2n個(gè)數(shù),且1,1,2,2,··,,剛好放完,所以放入數(shù)字個(gè)數(shù)必為偶數(shù),即Z,所以,Z,所以是4的倍數(shù)19、(1)正弦定理見解析;(2)充要條件,證明見解析【解析】(1)用語言描述正弦定理,并用公式表達(dá)正弦定理(2)利用“大角對大邊”的性質(zhì),并根據(jù)正弦定理進(jìn)行邊角互化即可【詳解】(1)正弦定理:在任意一個(gè)三角形中,各邊和它所對角的正弦值之比相等且等于這個(gè)三角形外接圓的直徑,即.(2)是充要條件.證明如下:充分性:又故有:必要性:又綜上,是的充要條件20、(1);.(2)或.【解析】(1)首先求得交點(diǎn)坐標(biāo),然后利用待定系數(shù)法確定直線方程,再根據(jù)兩平行直線之間距離公式即可計(jì)算距離;(2)根據(jù)截距式方程的求法解答【小問1詳解】由得設(shè)直線的方程為,代入點(diǎn)坐標(biāo)得,∴直線的方程為∴兩平行線間的距離【小問2詳解】當(dāng)直線過坐標(biāo)原點(diǎn)時(shí),直線的方程為,即;當(dāng)直線不過坐標(biāo)原點(diǎn)時(shí),設(shè)直線的方程為,代入點(diǎn)坐標(biāo)得,∴直線的方程的方程為,即綜上所述,直線的方程為或21、(1)(或(2)或【解析】(1)由條件可得,由此可求直線的斜率,由點(diǎn)斜式求直線的方程;(2)由條件可求到直線的距離,利用待定系數(shù)法求直線的方程.【小問1詳解】圓,得圓心,半徑,直線的斜率:,設(shè)直線的斜率為,有,解得.所求直線的方程為:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論