版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2026屆安徽省定遠爐橋中學高三上數(shù)學期末預測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,,,則的最小值為()A. B. C. D.2.已知數(shù)列是公比為的等比數(shù)列,且,若數(shù)列是遞增數(shù)列,則的取值范圍為()A. B. C. D.3.用電腦每次可以從區(qū)間內自動生成一個實數(shù),且每次生成每個實數(shù)都是等可能性的.若用該電腦連續(xù)生成3個實數(shù),則這3個實數(shù)都小于的概率為()A. B. C. D.4.某公園新購進盆錦紫蘇、盆虞美人、盆郁金香,盆盆栽,現(xiàn)將這盆盆栽擺成一排,要求郁金香不在兩邊,任兩盆錦紫蘇不相鄰的擺法共()種A. B. C. D.5.拋物線方程為,一直線與拋物線交于兩點,其弦的中點坐標為,則直線的方程為()A. B. C. D.6.在中,角、、的對邊分別為、、,若,,,則()A. B. C. D.7.已知函數(shù),若,使得,則實數(shù)的取值范圍是()A. B.C. D.8.函數(shù),,則“的圖象關于軸對稱”是“是奇函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.已知定義在R上的偶函數(shù)滿足,當時,,函數(shù)(),則函數(shù)與函數(shù)的圖象的所有交點的橫坐標之和為()A.2 B.4 C.5 D.610.已知等差數(shù)列的前n項和為,且,,若(,且),則i的取值集合是()A. B. C. D.11.函數(shù)的圖像大致為()A. B.C. D.12.若直線經過拋物線的焦點,則()A. B. C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,,分別為內角,,的對邊,,,,則的面積為__________.14.關于函數(shù)有下列四個命題:①函數(shù)在上是增函數(shù);②函數(shù)的圖象關于中心對稱;③不存在斜率小于且與函數(shù)的圖象相切的直線;④函數(shù)的導函數(shù)不存在極小值.其中正確的命題有______.(寫出所有正確命題的序號)15.正三棱柱的底面邊長為2,側棱長為,為中點,則三棱錐的體積為________.16.函數(shù)的定義域是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)一種游戲的規(guī)則為拋擲一枚硬幣,每次正面向上得2分,反面向上得1分.(1)設拋擲4次的得分為,求變量的分布列和數(shù)學期望.(2)當游戲得分為時,游戲停止,記得分的概率和為.①求;②當時,記,證明:數(shù)列為常數(shù)列,數(shù)列為等比數(shù)列.18.(12分)為了保障全國第四次經濟普查順利進行,國家統(tǒng)計局從東部選擇江蘇,從中部選擇河北、湖北,從西部選擇寧夏,從直轄市中選擇重慶作為國家綜合試點地區(qū),然后再逐級確定普查區(qū)域,直到基層的普查小區(qū),在普查過程中首先要進行宣傳培訓,然后確定對象,最后入戶登記,由于種種情況可能會導致入戶登記不夠順利,這為正式普查提供了寶貴的試點經驗,在某普查小區(qū),共有50家企事業(yè)單位,150家個體經營戶,普查情況如下表所示:普查對象類別順利不順利合計企事業(yè)單位401050個體經營戶10050150合計14060200(1)寫出選擇5個國家綜合試點地區(qū)采用的抽樣方法;(2)根據(jù)列聯(lián)表判斷是否有的把握認為“此普查小區(qū)的入戶登記是否順利與普查對象的類別有關”;(3)以該小區(qū)的個體經營戶為樣本,頻率作為概率,從全國個體經營戶中隨機選擇3家作為普查對象,入戶登記順利的對象數(shù)記為,寫出的分布列,并求的期望值.附:0.100.0100.0012.7066.63510.82819.(12分)已知a>0,b>0,a+b=2.(Ⅰ)求的最小值;(Ⅱ)證明:20.(12分)已知函數(shù),,且.(1)當時,求函數(shù)的減區(qū)間;(2)求證:方程有兩個不相等的實數(shù)根;(3)若方程的兩個實數(shù)根是,試比較,與的大小,并說明理由.21.(12分)2019年是五四運動100周年.五四運動以來的100年,是中國青年一代又一代接續(xù)奮斗、凱歌前行的100年,是中口青年用青春之我創(chuàng)造青春之中國、青春之民族的100年.為繼承和發(fā)揚五四精神在青年節(jié)到來之際,學校組織“五四運動100周年”知識競賽,競賽的一個環(huán)節(jié)由10道題目組成,其中6道A類題、4道B類題,參賽者需從10道題目中隨機抽取3道作答,現(xiàn)有甲同學參加該環(huán)節(jié)的比賽.(1)求甲同學至少抽到2道B類題的概率;(2)若甲同學答對每道A類題的概率都是,答對每道B類題的概率都是,且各題答對與否相互獨立.現(xiàn)已知甲同學恰好抽中2道A類題和1道B類題,用X表示甲同學答對題目的個數(shù),求隨機變量X的分布列和數(shù)學期望.22.(10分)已知函數(shù),其中.(1)函數(shù)在處的切線與直線垂直,求實數(shù)的值;(2)若函數(shù)在定義域上有兩個極值點,且.①求實數(shù)的取值范圍;②求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】,選B2、D【解析】
先根據(jù)已知條件求解出的通項公式,然后根據(jù)的單調性以及得到滿足的不等關系,由此求解出的取值范圍.【詳解】由已知得,則.因為,數(shù)列是單調遞增數(shù)列,所以,則,化簡得,所以.故選:D.【點睛】本題考查數(shù)列通項公式求解以及根據(jù)數(shù)列單調性求解參數(shù)范圍,難度一般.已知數(shù)列單調性,可根據(jù)之間的大小關系分析問題.3、C【解析】
由幾何概型的概率計算,知每次生成一個實數(shù)小于1的概率為,結合獨立事件發(fā)生的概率計算即可.【詳解】∵每次生成一個實數(shù)小于1的概率為.∴這3個實數(shù)都小于1的概率為.故選:C.【點睛】本題考查獨立事件同時發(fā)生的概率,考查學生基本的計算能力,是一道容易題.4、B【解析】
間接法求解,兩盆錦紫蘇不相鄰,被另3盆隔開有,扣除郁金香在兩邊有,即可求出結論.【詳解】使用插空法,先排盆虞美人、盆郁金香有種,然后將盆錦紫蘇放入到4個位置中有種,根據(jù)分步乘法計數(shù)原理有,扣除郁金香在兩邊,排盆虞美人、盆郁金香有種,再將盆錦紫蘇放入到3個位置中有,根據(jù)分步計數(shù)原理有,所以共有種.故選:B.【點睛】本題考查排列應用問題、分步乘法計數(shù)原理,不相鄰問題插空法是解題的關鍵,屬于中檔題.5、A【解析】
設,,利用點差法得到,所以直線的斜率為2,又過點,再利用點斜式即可得到直線的方程.【詳解】解:設,∴,又,兩式相減得:,∴,∴,∴直線的斜率為2,又∴過點,∴直線的方程為:,即,故選:A.【點睛】本題考查直線與拋物線相交的中點弦問題,解題方法是“點差法”,即設出弦的兩端點坐標,代入拋物線方程相減后可把弦所在直線斜率與中點坐標建立關系.6、B【解析】
利用兩角差的正弦公式和邊角互化思想可求得,可得出,然后利用余弦定理求出的值,最后利用正弦定理可求出的值.【詳解】,即,即,,,得,,.由余弦定理得,由正弦定理,因此,.故選:B.【點睛】本題考查三角形中角的正弦值的計算,考查兩角差的正弦公式、邊角互化思想、余弦定理與正弦定理的應用,考查運算求解能力,屬于中等題.7、C【解析】試題分析:由題意知,當時,由,當且僅當時,即等號是成立,所以函數(shù)的最小值為,當時,為單調遞增函數(shù),所以,又因為,使得,即在的最小值不小于在上的最小值,即,解得,故選C.考點:函數(shù)的綜合問題.【方法點晴】本題主要考查了函數(shù)的綜合問題,其中解答中涉及到基本不等式求最值、函數(shù)的單調性及其應用、全稱命題與存在命題的應用等知識點的綜合考查,試題思維量大,屬于中檔試題,著重考查了學生分析問題和解答問題的能力,以及轉化與化歸思想的應用,其中解答中轉化為在的最小值不小于在上的最小值是解答的關鍵.8、B【解析】
根據(jù)函數(shù)奇偶性的性質,結合充分條件和必要條件的定義進行判斷即可.【詳解】設,若函數(shù)是上的奇函數(shù),則,所以,函數(shù)的圖象關于軸對稱.所以,“是奇函數(shù)”“的圖象關于軸對稱”;若函數(shù)是上的偶函數(shù),則,所以,函數(shù)的圖象關于軸對稱.所以,“的圖象關于軸對稱”“是奇函數(shù)”.因此,“的圖象關于軸對稱”是“是奇函數(shù)”的必要不充分條件.故選:B.【點睛】本題主要考查充分條件和必要條件的判斷,結合函數(shù)奇偶性的性質判斷是解決本題的關鍵,考查推理能力,屬于中等題.9、B【解析】
由函數(shù)的性質可得:的圖像關于直線對稱且關于軸對稱,函數(shù)()的圖像也關于對稱,由函數(shù)圖像的作法可知兩個圖像有四個交點,且兩兩關于直線對稱,則與的圖像所有交點的橫坐標之和為4得解.【詳解】由偶函數(shù)滿足,可得的圖像關于直線對稱且關于軸對稱,函數(shù)()的圖像也關于對稱,函數(shù)的圖像與函數(shù)()的圖像的位置關系如圖所示,可知兩個圖像有四個交點,且兩兩關于直線對稱,則與的圖像所有交點的橫坐標之和為4.故選:B【點睛】本題主要考查了函數(shù)的性質,考查了數(shù)形結合的思想,掌握函數(shù)的性質是解題的關鍵,屬于中檔題.10、C【解析】
首先求出等差數(shù)列的首先和公差,然后寫出數(shù)列即可觀察到滿足的i的取值集合.【詳解】設公差為d,由題知,,解得,,所以數(shù)列為,故.故選:C.【點睛】本題主要考查了等差數(shù)列的基本量的求解,屬于基礎題.11、A【解析】
根據(jù)排除,,利用極限思想進行排除即可.【詳解】解:函數(shù)的定義域為,恒成立,排除,,當時,,當,,排除,故選:.【點睛】本題主要考查函數(shù)圖象的識別和判斷,利用函數(shù)值的符號以及極限思想是解決本題的關鍵,屬于基礎題.12、B【解析】
計算拋物線的交點為,代入計算得到答案.【詳解】可化為,焦點坐標為,故.故選:.【點睛】本題考查了拋物線的焦點,屬于簡單題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)題意,利用余弦定理求得,再運用三角形的面積公式即可求得結果.【詳解】解:由于,,,∵,∴,,由余弦定理得,解得,∴的面積.故答案為:.【點睛】本題考查余弦定理的應用和三角形的面積公式,考查計算能力.14、①②③【解析】
由單調性、對稱性概念、導數(shù)的幾何意義、導數(shù)與極值的關系進行判斷.【詳解】函數(shù)的定義域是,由于,在上遞增,∴函數(shù)在上是遞增,①正確;,∴函數(shù)的圖象關于中心對稱,②正確;,時取等號,∴③正確;,設,則,顯然是即的極小值點,④錯誤.故答案為:①②③.【點睛】本題考查函數(shù)的單調性、對稱性,考查導數(shù)的幾何意義、導數(shù)與極值,解題時按照相關概念判斷即可,屬于中檔題.15、【解析】
試題分析:因為正三棱柱的底面邊長為,側棱長為為中點,所以底面的面積為,到平面的距離為就是底面正三角形的高,所以三棱錐的體積為.考點:幾何體的體積的計算.16、【解析】由,得,所以,所以原函數(shù)定義域為,故答案為.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)分布列見解析,數(shù)學期望為6;(2)①;②證明見解析【解析】
(1)變量的所有可能取值為4,5,6,7,8,分別求出對應的概率,進而可求出變量的分布列和數(shù)學期望;(2)①得2分只需要拋擲一次正面向上或兩次反面向上,分別求出兩種情況的概率,進而可求得;②得分分兩種情況,第一種為得分后拋擲一次正面向上,第二種為得分后拋擲一次反面向上,可知當且時,,結合,可推出,從而可證明數(shù)列為常數(shù)列;結合,可推出,進而可證明數(shù)列為等比數(shù)列.【詳解】(1)變量的所有可能取值為4,5,6,7,8.每次拋擲一次硬幣,正面向上的概率為,反面向上的概率也為,則,.所以變量的分布列為:45678故變量的數(shù)學期望為.(2)①得2分只需要拋擲一次正面向上或兩次反面向上,概率的和為.②得分分兩種情況,第一種為得分后拋擲一次正面向上,第二種為得分后拋擲一次反面向上,故且時,有,則時,,所以,故數(shù)列為常數(shù)列;又,,所以數(shù)列為等比數(shù)列.【點睛】本題考查離散型隨機變量的分布列及數(shù)學期望,考查常數(shù)列及等比數(shù)列的證明,考查學生的計算求解能力與推理論證能力,屬于中檔題.18、(1)分層抽樣,簡單隨機抽樣(抽簽亦可)(2)有(3)分布列見解析,【解析】
(1)根據(jù)題意可以選用分層抽樣法,或者簡單隨機抽樣法.(2)由已知條件代入公式計算出結果,進而可以得到結果.(3)由已知條件計算出的分布列,進而求出的數(shù)學期望.【詳解】(1)分層抽樣,簡單隨機抽樣(抽簽亦可).(2)將列聯(lián)表中的數(shù)據(jù)代入公式計算得所以有的把握認為“此普查小區(qū)的入戶登記是否順利與普查對象的類別有關”.(3)以頻率作為概率,隨機選擇1家個體經營戶作為普查對象,入戶登記順利的概率為.可取0,1,2,3,計算可得的分布列為:0123【點睛】本題考查了運用數(shù)學模型解答實際生活問題,運用合理的抽樣方法,計算以及數(shù)據(jù)的分布列和數(shù)學期望,需要正確運用公式進行求解,本題屬于??碱}型,需要掌握解題方法.19、(Ⅰ)最小值為;(Ⅱ)見解析【解析】
(1)根據(jù)題意構造平均值不等式,結合均值不等式可得結果;(2)利用分析法證明,結合常用不等式和均值不等式即可證明.【詳解】(Ⅰ)則當且僅當,即,時,所以的最小值為.(Ⅱ)要證明:,只需證:,即證明:,由,也即證明:.因為,所以當且僅當時,有,即,當時等號成立.所以【點睛】本題考查均值不等式,分析法證明不等式,審清題意,仔細計算,屬中檔題.20、(1)(2)詳見解析(3)【解析】
試題分析:(1)當時,,由得減區(qū)間;(2)因為,所以,因為所以,方程有兩個不相等的實數(shù)根;(3)因為,,所以試題解析:(1)當時,,由得減區(qū)間;(2)法1:,,,所以,方程有兩個不相等的實數(shù)根;法2:,,是開口向上的二次函數(shù),所以,方程有兩個不相等的實數(shù)根;(3)因為,,又在和增,在減,所以.考點:利用導數(shù)求函數(shù)減區(qū)間,二次函數(shù)與二次方程關系21、(1);(2)分布列見解析,期望為.【解析】
(1)甲同學至少抽到2道B類題包含兩個事件:一個抽到2道B類題,一個是抽到3個B類題,計算出抽法數(shù)后可求得概率;(2)的所有可能值分別為,依次計算概率得分布列,再由期望公式計算期望.【詳
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 養(yǎng)老院工作人員獎懲制度
- 企業(yè)員工培訓與職業(yè)發(fā)展路徑制度
- 2026河北邯鄲市曲周縣醫(yī)院招聘人事代理人員26人備考題庫附答案
- 交通宣傳教育材料制作與發(fā)放制度
- 2026湖北省定向天津大學選調生招錄考試備考題庫附答案
- 2026甘肅銀行股份有限公司招聘校園考試備考題庫附答案
- 2026福建福州市馬尾海關單證資料管理崗位輔助人員招聘1人參考題庫附答案
- 2026西藏日喀則市亞東縣糧食公司人員招聘1人參考題庫附答案
- 公共交通服務質量投訴處理制度
- 2026重慶大學附屬涪陵醫(yī)院年衛(wèi)生專業(yè)技術人員招聘22人參考題庫附答案
- 消防培訓案例課件
- 2025年度精神科護士述職報告
- 上海市徐匯區(qū)2026屆初三一模物理試題(含答案)
- 2026陜西省森林資源管理局局屬企業(yè)招聘(55人)參考題庫及答案1套
- 2026年遼寧機電職業(yè)技術學院單招職業(yè)技能考試題庫附答案解析
- 春節(jié)前安全教育培訓課件
- 免疫治療相關甲狀腺功能亢進的分級
- 工業(yè)AI《2025年》機器視覺應用測試題
- 2024-2025學年七上期末數(shù)學試卷(原卷版)
- new共青團中央所屬單位2026年度高校畢業(yè)生公開招聘66人備考題庫及完整答案詳解
- 江蘇省蘇州市2024-2025學年高三上學期期末學業(yè)質量陽光指標調研物理試題(含答案)
評論
0/150
提交評論