版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
遼寧省本溪市2026屆高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在中,,則邊的長(zhǎng)等于()A. B.C. D.22.已知為虛數(shù)單位,復(fù)數(shù)是純虛數(shù),則()A B.4C.3 D.23.函數(shù)f(x)=的圖象大致形狀是()A. B.C. D.4.已知曲線,下列命題錯(cuò)誤的是()A.若,則是橢圓,其焦點(diǎn)在軸上B.若,則是圓,其半徑為C.若,則是雙曲線,其漸近線方程為D.若,,為上任意一點(diǎn),,為曲線的兩個(gè)焦點(diǎn),則5.設(shè),,且,則等于()A. B.C. D.6.有6本不同的書(shū),按下列方式進(jìn)行分配,其中分配種數(shù)正確的是()A.分給甲、乙、丙三人,每人各2本,有15種分法;B.分給甲、乙、丙三人中,一人4本,另兩人各1本,有180種分法;C.分給甲乙每人各2本,分給丙丁每人各1本,共有90種分法;D.分給甲乙丙丁四人,有兩人各2本,另兩人各1本,有1080種分法;7.如圖,在三棱錐中,點(diǎn)E在上,滿足,點(diǎn)F為的中點(diǎn),記分別為,則()A. B.C. D.8.已知函數(shù),則()A.函數(shù)在上單調(diào)遞增B.函數(shù)上有兩個(gè)零點(diǎn)C.函數(shù)有極大值16D.函數(shù)有最小值9.已知函數(shù)(其中)的部分圖像如圖所示,則函數(shù)的解析式為()A. B.C. D.10.已知F1(-5,0),F(xiàn)2(5,0),動(dòng)點(diǎn)P滿足|PF1|-|PF2|=2a,當(dāng)a為3和5時(shí),點(diǎn)P的軌跡分別為()A.雙曲線和一條直線 B.雙曲線和一條射線C.雙曲線的一支和一條直線 D.雙曲線的一支和一條射線11.設(shè)雙曲線()的焦距為12,則()A.1 B.2C.3 D.412.若過(guò)點(diǎn)(2,1)的圓與兩坐標(biāo)軸都相切,則圓心到直線的距離為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù),其導(dǎo)函數(shù)為函數(shù),則__________14.曲線在處的切線方程是________.15.?dāng)?shù)列的前項(xiàng)和為,則的通項(xiàng)公式為_(kāi)_______.16.曲線在處的切線方程為_(kāi)_____三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù)(1)當(dāng)時(shí),求的單調(diào)遞減區(qū)間;(2)若關(guān)于的方程恰有兩個(gè)不等實(shí)根,求實(shí)數(shù)的取值范圍18.(12分)在中,其頂點(diǎn)坐標(biāo)為.(1)求直線的方程;(2)求的面積.19.(12分)已知函數(shù).(1)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍;(2)解關(guān)于的不等式:.20.(12分)已知圓C:x2+y2-2x+4y-4=0,問(wèn)是否存在斜率是1的直線l,使l被圓C截得的弦AB,以AB為直徑的圓經(jīng)過(guò)原點(diǎn),若存在,寫(xiě)出直線l的方程;若不存在,說(shuō)明理由.21.(12分)已知圓C過(guò)兩點(diǎn),,且圓心C在直線上(1)求圓C的方程;(2)過(guò)點(diǎn)作圓C的切線,求切線方程22.(10分)已知橢圓的離心率為,短軸端點(diǎn)到焦點(diǎn)的距離為2(1)求橢圓的方程;(2)設(shè)為橢圓上任意兩點(diǎn),為坐標(biāo)原點(diǎn),且以為直徑的圓經(jīng)過(guò)原點(diǎn),求證:原點(diǎn)到直線的距離為定值,并求出該定值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】由余弦定理求解【詳解】由余弦定理,得,即,解得(負(fù)值舍去)故選:A2、C【解析】化簡(jiǎn)復(fù)數(shù)得,由其為純虛數(shù)求參數(shù)a,進(jìn)而求的模即可.【詳解】由為純虛數(shù),∴,解得:,則,故選:C3、B【解析】利用函數(shù)的奇偶性排除選項(xiàng)A,C,然后利用特殊值判斷即可【詳解】解:由題得函數(shù)的定義域?yàn)椋P(guān)于原點(diǎn)對(duì)稱.所以函數(shù)是奇函數(shù),排除選項(xiàng)A,C.當(dāng)時(shí),,排除選項(xiàng)D,故選:B4、D【解析】根據(jù)橢圓和雙曲線的性質(zhì)以及定義逐一判斷即可.【詳解】曲線,若,則是橢圓,其焦點(diǎn)在軸上,故A正確;若,則,即是圓,半徑為,故B正確;若,則是雙曲線,當(dāng),則漸近線方程為,當(dāng),則漸近線方程為,故C正確;若,,則是雙曲線,其焦點(diǎn)在軸上,由雙曲線的定義可知,,故D錯(cuò)誤;故選:D5、A【解析】由空間向量垂直的坐標(biāo)表示可求得實(shí)數(shù)的值.【詳解】由已知可得,解得.故選:A.6、D【解析】根據(jù)題意,分別按照選項(xiàng)說(shuō)法列式計(jì)算驗(yàn)證即可做出判斷.【詳解】選項(xiàng)A,6本不同的書(shū)分給甲、乙、丙三人,每人各2本,有種分配方法,故該選項(xiàng)錯(cuò)誤;選項(xiàng)B,6本不同的書(shū)分給甲、乙、丙三人,一人4本,另兩人各1本,先將6本書(shū)分成4-1-1的3組,再將三組分給甲乙丙三人,有種分配方法,故該選項(xiàng)錯(cuò)誤;選項(xiàng)C,6本不同的書(shū)分給甲乙每人各2本,有種方法,其余分給丙丁每人各1本,有種方法,所以不同的分配方法有種,故該選項(xiàng)錯(cuò)誤;選項(xiàng)D,先將6本書(shū)分為2-2-1-14組,再將4組分給甲乙丙丁4人,有種方法,故該選項(xiàng)正確.故選:D.7、B【解析】利用空間向量加減、數(shù)乘的幾何意義,結(jié)合三棱錐用表示出即可.【詳解】由題設(shè),,,,.故選:B8、C【解析】對(duì)求導(dǎo),研究的單調(diào)性以及極值,再結(jié)合選項(xiàng)即可得到答案.【詳解】,由,得或,由,得,所以在上遞增,在上遞減,在上遞增,所以極大值為,極小值為,所以有3個(gè)零點(diǎn),且無(wú)最小值.故選:C9、B【解析】根據(jù)題圖有且,結(jié)合五點(diǎn)法求參數(shù),即可得的解析式.【詳解】由圖知:且,則,所以,則,即,又,可得,,則,,又,即有.綜上,.故選:B10、D【解析】由雙曲線定義結(jié)合參數(shù)a的取值分類討論而得.【詳解】依題意得,當(dāng)時(shí),,且,點(diǎn)P的軌跡為雙曲線的右支;當(dāng)時(shí),,故點(diǎn)P的軌跡為一條射線.故選D.故選:D11、B【解析】根據(jù)可得關(guān)于的方程,解方程即可得答案.【詳解】因?yàn)榭苫癁?,所以,則.故選:B.【點(diǎn)睛】本題考查已知雙曲線的焦距求參數(shù)的值,考查函數(shù)與方程思想,考查運(yùn)算求解能力,屬于基礎(chǔ)題.12、B【解析】由題意可知圓心在第一象限,設(shè)圓心的坐標(biāo)為,可得圓的半徑為,寫(xiě)出圓的標(biāo)準(zhǔn)方程,利用點(diǎn)在圓上,求得實(shí)數(shù)的值,利用點(diǎn)到直線的距離公式可求出圓心到直線的距離.【詳解】由于圓上的點(diǎn)在第一象限,若圓心不在第一象限,則圓與至少與一條坐標(biāo)軸相交,不合乎題意,所以圓心必在第一象限,設(shè)圓心的坐標(biāo)為,則圓的半徑為,圓的標(biāo)準(zhǔn)方程為.由題意可得,可得,解得或,所以圓心的坐標(biāo)為或,圓心到直線的距離均為;圓心到直線的距離均為圓心到直線的距離均為;所以,圓心到直線的距離為.故選:B.【點(diǎn)睛】本題考查圓心到直線距離的計(jì)算,求出圓的方程是解題的關(guān)鍵,考查計(jì)算能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)解析式,可求得解析式,代入數(shù)據(jù),即可得答案.詳解】∵,∴,∴.故答案為:.14、【解析】求出函數(shù)的導(dǎo)函數(shù),把代入即可得到切線的斜率,然后根據(jù)和斜率寫(xiě)出切線的方程即可.【詳解】解:由函數(shù)知,把代入得到切線的斜率則切線方程為:,即.故答案為:【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,屬于基礎(chǔ)題15、【解析】討論和兩種情況,進(jìn)而利用求得答案.【詳解】由題意,時(shí),,時(shí),,則,于是,故答案為:16、【解析】求得的導(dǎo)數(shù),可得切線的斜率和切點(diǎn),由斜截式方程可得切線方程【詳解】解:的導(dǎo)數(shù)為,可得曲線在處的切線斜率為,切點(diǎn)為,即有切線方程為故答案為【點(diǎn)睛】本題考查導(dǎo)數(shù)的運(yùn)用:求切線方程,考查導(dǎo)數(shù)的幾何意義,直線方程的運(yùn)用,考查方程思想,屬于基礎(chǔ)題三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)【解析】(1)求出導(dǎo)數(shù),令,得出變化情況表,即可得出單調(diào)區(qū)間;(2)分離參數(shù)得,構(gòu)造函數(shù),利用導(dǎo)數(shù)討論單調(diào)性,根據(jù)與恰有兩個(gè)不同交點(diǎn)即可得出.【詳解】(1)當(dāng)時(shí),函數(shù),則令,得,,當(dāng)x變化時(shí),的變化情況如下表:1+00+↗極大值↘極小值↗∴在上單調(diào)遞減(2)依題意,即.則令,則當(dāng)時(shí),,故單調(diào)遞增,且;當(dāng)時(shí),,故單調(diào)遞減,且∴函數(shù)在處取得最大值故要使與恰有兩個(gè)不同的交點(diǎn),只需∴實(shí)數(shù)a的取值范圍是【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題考查根據(jù)方程根的個(gè)數(shù)求參數(shù),解題的關(guān)鍵是參數(shù)分離,構(gòu)造函數(shù)利用導(dǎo)數(shù)討論單調(diào)性,根據(jù)函數(shù)交點(diǎn)個(gè)數(shù)判斷.18、(1)(2)【解析】(1)先求出AB的斜率,再利用點(diǎn)斜式寫(xiě)出方程即可;(2)先求出,再求出C到AB的距離即可得到答案.【小問(wèn)1詳解】由已知,,所以直線的方程為,即.【小問(wèn)2詳解】,C到直線AB的距離為,所以的面積為.19、(1);(2)答案見(jiàn)解析.【解析】(1)由題設(shè)可得,進(jìn)而可知在恒成立,即可求參數(shù)范圍.(2)題設(shè)不等式等價(jià)于,討論的大小并根據(jù)一元二次不等式的解法求解集即可.【小問(wèn)1詳解】當(dāng)時(shí),得,即.由,則,∴,即,∴,即,∴實(shí)數(shù)的取值范圍是.【小問(wèn)2詳解】由,即,即.①當(dāng)時(shí),不等式解集為;②當(dāng)時(shí),不等式的解集為;③當(dāng)時(shí),不等式的解集為.綜上,當(dāng)時(shí)﹐不等式的解集為;當(dāng)時(shí),不等式的解集為﹔當(dāng)時(shí),不等式的解集為.20、x-y-4=0或x-y+1="0."【解析】假設(shè)存在,并設(shè)出直線方程y=x+b,然后代入圓的方程得到關(guān)于x的一元二次方程,利用韋達(dá)定理得到根的關(guān)系,最后利用OA⊥OB即x1x2+y1y2=0,得到參數(shù)b的方程求解即可試題解析:設(shè)直線l的方程為y=x+b①圓C:x2+y2-2x+4y-4=0.②聯(lián)立①②消去y,得2x2+2(b+1)x+b2+4b-4=0設(shè)A(x1,y1),B(x2,y2),則有③因?yàn)橐訟B為直徑的圓經(jīng)過(guò)原點(diǎn),所以O(shè)A⊥OB,即x1x2+y1y2=0,而y1y2=(x1+b)(x2+b)=x1x2+b(x1+x2)+b2,所以2x1x2+b(x1+x2)+b2=0,把③代入:b2+4b-4-b(b+1)+b2=0,即b2+3b-4=0,解得b=1或b=-4,故直線l存在,方程是x-y+1=0,或x-y-4=0考點(diǎn):存在性問(wèn)題【方法點(diǎn)睛】存在性問(wèn)題,首先應(yīng)假設(shè)存在,然后去求解.對(duì)本題來(lái)說(shuō)具體是:設(shè)出直線方程y=x+b,然后分析幾何性質(zhì)得到OA⊥OB即得到關(guān)于參數(shù)b方程求解即可.解該類問(wèn)題最容易出錯(cuò)的的地方是,忽視對(duì)參數(shù)范圍的考慮,即直線方程與圓的方程聯(lián)立求解后應(yīng)得到,即求出的b值必須滿足b的范圍,否則無(wú)解21、(1).(或標(biāo)準(zhǔn)形式)(2)或【解析】(1)根據(jù)題意,求出中垂線方程,與直線聯(lián)立,可得圓心的坐標(biāo),求出圓的半徑,即可得答案;(2)分切線的斜率存在與不存在兩種情況討論,求出切線的方程,綜合可得答案【小問(wèn)1詳解】解:根據(jù)題意,因?yàn)閳A過(guò)兩點(diǎn),,設(shè)的中點(diǎn)為,則,因?yàn)?,所以的中垂線方程為,即又因?yàn)閳A心在直線上,聯(lián)立,解得,所以圓心,半徑,故圓的方程為,【小問(wèn)2詳解】解:當(dāng)過(guò)點(diǎn)P的切線的斜率不存在時(shí),此時(shí)直線與圓C相切當(dāng)過(guò)點(diǎn)P的切線斜率k存在時(shí),設(shè)切線方程為即(*)由圓心C到切線的距離,可得將代入(*),得切線方程為綜上,所求切線方程為或22、(1)(2)證明見(jiàn)解析,定值為【解析】(1)根據(jù)題意得到,,得到橢圓方程.(2)考慮直線斜率存在和不存在兩種情況,聯(lián)立方程,根據(jù)韋達(dá)定理得到根與系數(shù)的
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 內(nèi)勤培訓(xùn)開(kāi)訓(xùn)
- 廣告門(mén)市活動(dòng)策劃方案(3篇)
- 物流貨車安全管理制度內(nèi)容(3篇)
- 起始年級(jí)學(xué)業(yè)水平管理制度(3篇)
- 銀行活動(dòng)內(nèi)容策劃方案(3篇)
- 《GA 888-2010公安單警裝備 警用裝備包》專題研究報(bào)告
- 《GA 655-2006人毛發(fā)ABO血型檢測(cè)解離法》專題研究報(bào)告
- 獸醫(yī)生物制品技術(shù)
- 2026年及未來(lái)5年市場(chǎng)數(shù)據(jù)中國(guó)背景墻行業(yè)市場(chǎng)全景監(jiān)測(cè)及投資戰(zhàn)略咨詢報(bào)告
- 養(yǎng)老院入住老人財(cái)務(wù)收支審計(jì)制度
- 2025四川眉山市國(guó)有資本投資運(yùn)營(yíng)集團(tuán)有限公司招聘50人筆試參考題庫(kù)附帶答案詳解
- 2024年山東濟(jì)南中考滿分作文《為了這份繁華》
- 2025年鐵嶺衛(wèi)生職業(yè)學(xué)院?jiǎn)握新殬I(yè)傾向性測(cè)試題庫(kù)新版
- 《煤礦安全生產(chǎn)責(zé)任制》培訓(xùn)課件2025
- 項(xiàng)目進(jìn)度跟進(jìn)及完成情況匯報(bào)總結(jié)報(bào)告
- 2025年常州機(jī)電職業(yè)技術(shù)學(xué)院高職單招語(yǔ)文2018-2024歷年參考題庫(kù)頻考點(diǎn)含答案解析
- 民間融資居間合同
- 2024-2025學(xué)年冀教版九年級(jí)數(shù)學(xué)上冊(cè)期末綜合試卷(含答案)
- 《智能網(wǎng)聯(lián)汽車車控操作系統(tǒng)功能安全技術(shù)要求》
- 表面活性劑化學(xué)知識(shí)點(diǎn)
- 公司綠色可持續(xù)發(fā)展規(guī)劃報(bào)告
評(píng)論
0/150
提交評(píng)論