版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
新疆維吾爾自治區(qū)阿克蘇市農(nóng)一師高級中學(xué)2026屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知直線m經(jīng)過,兩點(diǎn),則直線m的斜率為()A.-2 B.C. D.22.中國古代《易經(jīng)》一書中記載,人們通過在繩子上打結(jié)來記錄數(shù)據(jù),即“結(jié)繩計(jì)數(shù)”,如圖,一位古人在從右到左(即從低位到高位)依次排列的紅繩子上打結(jié),滿六進(jìn)一,用6來記錄每年進(jìn)的錢數(shù),由圖可得,這位古人一年收入的錢數(shù)用十進(jìn)制表示為()A.180 B.179C.178 D.1773.已知橢圓與橢圓,則下列結(jié)論正確的是()A.長軸長相等 B.短軸長相等C.焦距相等 D.離心率相等4.拋物線的焦點(diǎn)坐標(biāo)是A. B.C. D.5.已知下列四個命題,其中正確的是()A. B.C. D.6.如果直線與直線垂直,那么的值為()A. B.C. D.27.正數(shù)a,b滿足,若不等式對任意實(shí)數(shù)x恒成立,則實(shí)數(shù)m的取值范圍是A. B.C. D.8.給出如下四個命題正確的是()①方程表示的圖形是圓;②橢圓的離心率;③拋物線的準(zhǔn)線方程是;④雙曲線的漸近線方程是A.③ B.①③C.①④ D.②③④9.已知事件A,B相互獨(dú)立,,則()A.0.24 B.0.8C.0.3 D.0.1610.在正方體的12條棱中任選3條,其中任意2條所在的直線都是異面直線的概率為()A. B.C. D.11.定義域?yàn)榈暮瘮?shù)滿足,且的導(dǎo)函數(shù),則滿足的的集合為A. B.C. D.12.橢圓的焦點(diǎn)為F1,F(xiàn)2,點(diǎn)P在橢圓上,若|PF1|=4,則∠F1PF2的余弦值為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示,在平行六面體中,,若,則___________.14.已知橢圓C:的左右焦點(diǎn)分別為,,O為坐標(biāo)原點(diǎn),以下說法正確的是______①過點(diǎn)的直線與橢圓C交于A,B兩點(diǎn),則的周長為8②橢圓C上存在點(diǎn)P,使得③橢圓C的離心率為④P為橢圓上一點(diǎn),Q為圓上一點(diǎn),則線段PQ的最大長度為315.1202年意大利數(shù)學(xué)家列昂那多-斐波那契以兔子繁殖為例,引人“兔子數(shù)列”,又稱斐波那契數(shù)列.即該數(shù)列中的數(shù)字被人們稱為神奇數(shù),在現(xiàn)代物理,化學(xué)等領(lǐng)域都有著廣泛的應(yīng)用.若此數(shù)列各項(xiàng)被3除后的余數(shù)構(gòu)成一新數(shù)列,則數(shù)列的前2022項(xiàng)的和為________.16.若橢圓:的長軸長為4,焦距為2,則橢圓的標(biāo)準(zhǔn)方程為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓:的一個焦點(diǎn)坐標(biāo)為,離心率.(1)求橢圓的方程;(2)設(shè)為坐標(biāo)原點(diǎn),橢圓與直線相交于兩個不同的點(diǎn)A、B,線段AB的中點(diǎn)為M.若直線OM的斜率為-1,求線段AB的長;(3)如圖,設(shè)橢圓上一點(diǎn)R的橫坐標(biāo)為1(R在第一象限),過R作兩條不重合直線分別與橢圓交于P、Q兩點(diǎn)、若直線PR與QR的傾斜角互補(bǔ),求直線PQ的斜率的所有可能值組成的集合.18.(12分)給出以下三個條件:①;②,,成等比數(shù)列;③.請從這三個條件中任選一個,補(bǔ)充到下面問題中,并完成作答.若選擇多個條件分別作答,以第一個作答計(jì)分已知公差不為0的等差數(shù)列的前n項(xiàng)和為,,______(1)求數(shù)列的通項(xiàng)公式;(2)若,令,求數(shù)列的前n項(xiàng)和19.(12分)已知函數(shù)在區(qū)間上有最大值和最小值(1)求實(shí)數(shù)、的值;(2)設(shè),若不等式,在上恒成立,求實(shí)數(shù)的取值范圍20.(12分)設(shè)數(shù)列滿足,數(shù)列的前項(xiàng)和為,且(1)求證:數(shù)列為等差數(shù)列,并求的通項(xiàng)公式;(2)設(shè),若對任意正整數(shù),當(dāng)時,恒成立,求實(shí)數(shù)的取值范圍.21.(12分)要設(shè)計(jì)一種圓柱形、容積為500mL的一體化易拉罐金屬包裝,如何設(shè)計(jì)才能使得總成本最低?22.(10分)如圖,正方體的棱長為,分別是的中點(diǎn),點(diǎn)在棱上,().(Ⅰ)三棱錐的體積分別為,當(dāng)為何值時,最大?最大值為多少?(Ⅱ)若平面,證明:平面平面.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)斜率公式求得正確答案.【詳解】直線的斜率為:.故選:A2、D【解析】由于從右到左依次排列的繩子上打結(jié),滿六進(jìn)一,所以從右到左的數(shù)分別為、、,然后把它們相加即可.【詳解】(個).所以古人一年收入的錢數(shù)用十進(jìn)制表示為個.故選:D.3、C【解析】利用,可得且,即可得出結(jié)論【詳解】∵,且,橢圓與橢圓的關(guān)系是有相等的焦距故選:C4、D【解析】根據(jù)拋物線的焦點(diǎn)坐標(biāo)為可知,拋物線即的焦點(diǎn)坐標(biāo)為,故選D.考點(diǎn):拋物線的標(biāo)準(zhǔn)方程及其幾何性質(zhì).5、B【解析】根據(jù)基本初等函數(shù)的求導(dǎo)公式和求導(dǎo)法則即可求解判斷.【詳解】,故A錯誤;,故B正確;,故C錯誤;,故D錯誤.故選:B.6、A【解析】根據(jù)兩條直線垂直列方程,化簡求得的值.【詳解】由于直線與直線垂直,所以.故選:A7、A【解析】利用基本不等式求得的最小值,把問題轉(zhuǎn)化為恒成立的類型,求解的最大值即可.【詳解】,,且a,b為正數(shù),,當(dāng)且僅當(dāng),即時,,若不等式對任意實(shí)數(shù)x恒成立,則對任意實(shí)數(shù)x恒成立,即對任意實(shí)數(shù)x恒成立,,,故選:A【點(diǎn)睛】本題主要考查了恒成立問題,基本不等式求最值,二次函數(shù)求最值,屬于中檔題.8、A【解析】對選項(xiàng)①,根據(jù)圓一般方程求解即可判斷①錯誤,對選項(xiàng)②,求出橢圓離心率即可判斷②錯誤,對③,求出拋物線漸近線即可判斷③正確,對④,求出雙曲線漸近線方程即可判斷④錯誤?!驹斀狻繉τ冖龠x項(xiàng),,,故①錯誤;對于②選項(xiàng),由題知,所以,所以離心率,故②錯誤;對于③選項(xiàng),拋物線化為標(biāo)準(zhǔn)形式得拋物線,故準(zhǔn)線方程是,故③正確;對于④選項(xiàng),雙曲線化為標(biāo)準(zhǔn)形式得,所以,焦點(diǎn)在軸上,故漸近線方程是,故④錯誤.故選:A9、B【解析】利用事件獨(dú)立性的概率乘法公式及條件概率公式進(jìn)行求解.【詳解】因?yàn)槭录嗀,B相互獨(dú)立,所以,所以故選:B10、B【解析】根據(jù)正方體的性質(zhì)確定3條棱兩兩互為異面直線的情況數(shù),結(jié)合組合數(shù)及古典概率的求法,求任選3條其中任意2條所在的直線是異面直線的概率.【詳解】如下圖,正方體中如:中任意2條所在的直線都是異面直線,∴這樣的3條直線共有8種情況,∴任選3條,其中任意2條所在的直線都是異面直線的概率為.故選:B.11、B【解析】利用2f(x)<x+1構(gòu)造函數(shù)g(x)=2f(x)-x-1,進(jìn)而可得g′(x)=2f′(x)-1>0.得出g(x)的單調(diào)性結(jié)合g(1)=0即可解出【詳解】令g(x)=2f(x)-x-1.因?yàn)閒′(x)>,所以g′(x)=2f′(x)-1>0.所以g(x)單調(diào)增函數(shù)因?yàn)閒(1)=1,所以g(1)=2f(1)-1-1=0.所以當(dāng)x<1時,g(x)<0,即2f(x)<x+1.故選B.【點(diǎn)睛】本題主要考察導(dǎo)數(shù)的運(yùn)算以及構(gòu)造函數(shù)利用其單調(diào)性解不等式.屬于中檔題12、B【解析】根據(jù)題意,橢圓的標(biāo)準(zhǔn)方程為,其中則,則有|F1F2|=2,若a=3,則|PF1|+|PF2|=2a=6,又由|PF1|=4,則|PF2|=6-|PF1|=2,則cos∠F1PF2==.故選B二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】題中幾何體為平行六面體,就要充分利用幾何體的特征進(jìn)行轉(zhuǎn)化,,再將轉(zhuǎn)化為,以及將轉(zhuǎn)化為,,總之等式右邊為,,,從而得出,.【詳解】解:因?yàn)椋?,所以,,則.故答案為:2.【點(diǎn)睛】要充分利用幾何體的幾何特征,以及將作為轉(zhuǎn)化的目標(biāo),從而得解.14、①②④【解析】根據(jù)橢圓的幾何性質(zhì)結(jié)合的周長計(jì)算可判斷①;根據(jù),可通過以為直徑作圓,是否與橢圓相交判斷②;求出橢圓的離心率可判斷③;計(jì)算橢圓上的點(diǎn)到圓心的距離的最大值,即可判斷④.【詳解】對于①,由題意知:的周長等于,故①正確;對于②,,故以為直徑作圓,與橢圓相交,交點(diǎn)即設(shè)為P,故橢圓C上存在點(diǎn)P,使得,故②正確;對于③,,故③錯誤;對于④,設(shè)P為橢圓上一點(diǎn),坐標(biāo)為,則,故,因?yàn)?,所以的最大值?,故線段PQ的最大長度為2+1=3,故④正確,故答案為:①②④.15、【解析】由數(shù)列各項(xiàng)除以3的余數(shù),可得為,知是周期為8的數(shù)列,即可求出數(shù)列的前2022項(xiàng)的和.【詳解】由數(shù)列各項(xiàng)除以3的余數(shù),可得為,是周期為8的數(shù)列,一個周期中八項(xiàng)和為,又,數(shù)列的前2022項(xiàng)的和.故答案為:.16、【解析】由焦距可得c,長軸長得到a,再根據(jù)可得答案.【詳解】因?yàn)闄E圓的長軸長為4,則,焦距為2,由,得,則橢圓的標(biāo)準(zhǔn)方程為:.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2);(3).【解析】(1)根據(jù)給定條件求出橢圓長半軸長a即可計(jì)算得解.(2)將代入橢圓的方程,再結(jié)合給定條件求出k值即可計(jì)算出AB的長.(3)設(shè)出直線PR的方程,再與橢圓的方程聯(lián)立求出點(diǎn)P坐標(biāo),同理可得點(diǎn)Q坐標(biāo),計(jì)算PQ的斜率即可作答.【小問1詳解】依題意,橢圓的半焦距c=1,而,解得,則,所以橢圓的方程是:.【小問2詳解】由消去y并整理得:,解得,,于是得線段AB的中點(diǎn),直線OM斜率為,解得,因此,,所以線段AB的長為.【小問3詳解】由(1)知,點(diǎn),依題意,設(shè)直線PR的斜率為,直線PR方程為:,由消去y并整理得,,設(shè)點(diǎn),則有,顯然直線QR的斜率為-t,設(shè)點(diǎn),同理有,于是得直線PQ的斜率,所以直線PQ的斜率的所有可能值組成的集合.【點(diǎn)睛】方法點(diǎn)睛:求橢圓的標(biāo)準(zhǔn)方程有兩種方法:①定義法:根據(jù)橢圓的定義,確定,的值,結(jié)合焦點(diǎn)位置可寫出橢圓方程②待定系數(shù)法:若焦點(diǎn)位置明確,則可設(shè)出橢圓的標(biāo)準(zhǔn)方程,結(jié)合已知條件求出a,b;若焦點(diǎn)位置不明確,則需要分焦點(diǎn)在x軸上和y軸上兩種情況討論.18、(1)(2)【解析】(1)若選①,則根據(jù)等差數(shù)列的前n項(xiàng)和公式,結(jié)合,求得公差,可得答案;若選②,則根據(jù),,成等比數(shù)列,列出方程,結(jié)合,求得公差,可得答案;若選③,則根據(jù),列出方程,結(jié)合,求得公差,可得答案;(2)由(1)可得的表達(dá)式,利用錯位相減法,求得答案.【小問1詳解】設(shè)數(shù)列的公差為d選擇①,由題意得,又,則,所以;選擇②,由,,成等比數(shù)列,得,即,解得,或(舍去),所以;選擇③,由,得,解得,所以【小問2詳解】由題意知,∴①②①-②得∴,即.19、(1),;(2).【解析】(1)分析函數(shù)在區(qū)間上的單調(diào)性,結(jié)合已知條件可得出關(guān)于實(shí)數(shù)、的方程組,即可解得實(shí)數(shù)、的值;(2)由(1)可得,利用參變量分離法可得出,利用單調(diào)性求出函數(shù)在上的最小值,即可得出實(shí)數(shù)的取值范圍.【小問1詳解】解:的對稱軸是,又,所以,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,當(dāng)時,取最小值,當(dāng)時,取最大值,即,解得.【小問2詳解】解:由(1)知:,所以,,又,,令,則在上是增函數(shù).所以,,要使在上恒成立,只需,因此,實(shí)數(shù)的取值范圍為20、(1)證明見解析,;(2)或.【解析】(1)結(jié)合與關(guān)系用即可證明為常數(shù);求出通項(xiàng)公式后利用累加法即可求的通項(xiàng)公式;(2)裂項(xiàng)相消求,判斷單調(diào)性求其最大值即可.【小問1詳解】當(dāng)時,得到,∴,當(dāng)時,是以4為首項(xiàng),2為公差的等差數(shù)列∴當(dāng)時,當(dāng)時,也滿足上式,.【小問2詳解】令,當(dāng),因此的最小值為,的最大值為對任意正整數(shù),當(dāng)時,恒成立,得,即在時恒成立,,解得t<0或t>3.21、當(dāng)圓柱底面半徑為,高為時,總成本最底.【解析】設(shè)圓柱底面半徑為cm,高為cm,圓柱表面積為Scm2,進(jìn)而根據(jù)體積得到,然后求出表面積,進(jìn)而運(yùn)用導(dǎo)數(shù)的方法求得表面積的最小值,此時成本最小.【詳解】設(shè)圓柱底面半徑為cm,高為cm,圓柱表面積為Scm2,每平方厘米金屬包裝造價為元,由題意得:,則,表面積造價,,令,得,令,得,的單調(diào)遞減區(qū)間為,遞增區(qū)間為,當(dāng)圓柱底面半徑為,高為時,總成本最底.22、(Ⅰ),.(Ⅱ)見解析.【解析】(Ⅰ)由題可知,,由
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 居民種花活動方案策劃(3篇)
- 《GA 1002-2012劇毒化學(xué)品、放射源存放場所治安防范要求》專題研究報(bào)告深度
- 《GA 664-2006公安獎匾》專題研究報(bào)告
- 養(yǎng)老院志愿者服務(wù)管理制度
- 養(yǎng)老院入住老人糾紛調(diào)解與處理制度
- 養(yǎng)老院個性化服務(wù)制度
- 2026湖南岳陽市云溪區(qū)人民法院招聘3人備考題庫附答案
- 2026福建漳州市鼓浪嶼故宮文物館招聘6人參考題庫附答案
- 2026自然資源部所屬單位招聘634人參考題庫附答案
- 2026貴州醫(yī)科大學(xué)附屬白云醫(yī)院養(yǎng)老護(hù)理員招聘8人考試備考題庫附答案
- 如何做好一名護(hù)理帶教老師
- 房地產(chǎn)項(xiàng)目回款策略與現(xiàn)金流管理
- 花溪區(qū)高坡苗族鄉(xiāng)國土空間總體規(guī)劃 (2021-2035)
- 非連續(xù)性文本閱讀(中考試題20篇)-2024年中考語文重難點(diǎn)復(fù)習(xí)攻略(解析版)
- 專題13 三角函數(shù)中的最值模型之胡不歸模型(原卷版)
- 門診藥房西藥管理制度
- 新能源汽車生產(chǎn)代工合同
- 2025年中煤科工集團(tuán)重慶研究院有限公司招聘筆試參考題庫含答案解析
- 消防救援預(yù)防職務(wù)犯罪
- 一體化泵站安裝施工方案
- 畜禽糞污資源化利用培訓(xùn)
評論
0/150
提交評論