山東省濱州市鄒平雙語學(xué)校一、二區(qū)2026屆高二上數(shù)學(xué)期末檢測試題含解析_第1頁
山東省濱州市鄒平雙語學(xué)校一、二區(qū)2026屆高二上數(shù)學(xué)期末檢測試題含解析_第2頁
山東省濱州市鄒平雙語學(xué)校一、二區(qū)2026屆高二上數(shù)學(xué)期末檢測試題含解析_第3頁
山東省濱州市鄒平雙語學(xué)校一、二區(qū)2026屆高二上數(shù)學(xué)期末檢測試題含解析_第4頁
山東省濱州市鄒平雙語學(xué)校一、二區(qū)2026屆高二上數(shù)學(xué)期末檢測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

山東省濱州市鄒平雙語學(xué)校一、二區(qū)2026屆高二上數(shù)學(xué)期末檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中說:“九百九十六斤棉,贈分八子做盤纏,次第每人多十七,要將第八數(shù)來言,務(wù)要分明依次第,孝和休惹外人傳.”意為:“996斤棉花,分別贈送給8個子女做旅費,從第一個孩子開始,以后每人依次多17斤,直到第8個孩子為止.分配時一定要依照次序分,要順從父母,兄弟間和氣,不要引得外人說閑話.”在這個問題中,第5個孩子分到棉花為()A.133斤 B.116斤C.99斤 D.65斤2.已知三個頂點都在拋物線上,且為拋物線的焦點,若,則()A.6 B.8C.10 D.123.若,則下列正確的是()A. B.C. D.4.函數(shù)在的最大值是()A. B.C. D.5.已知函數(shù),,若對于任意的,存在唯一的,使得,則實數(shù)a的取值范圍是()A(e,4) B.(e,4]C.(e,4) D.(,4]6.已知三棱柱中,,,D點是線段上靠近A的一個三等分點,則()A. B.C. D.7.已知向量a→=(1,1,k),A. B.C. D.8.已知命題P:,,則命題P的否定為()A., B.,C., D.,9.拋物線的頂點在原點,對稱軸是x軸,點在拋物線上,則拋物線的方程為()A. B.C. D.10.已知直線的方程為,則該直線的傾斜角為()A. B.C. D.11.傾斜角為45°,在y軸上的截距為-1的直線方程是()A.x-y+1=0 B.x-y-1=0C.x+y-1=0 D.x+y+1=012.已知直線l和拋物線交于A,B兩點,O為坐標原點,且,交AB于點D,點D的坐標為,則p的值為()A. B.1C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知,則曲線在點處的切線方程是______.14.與雙曲線有共同漸近線,并且經(jīng)過點的雙曲線方程是______15.已知直線與平行,則實數(shù)的值為_____________.16.寫出一個離心率且焦點在軸上的雙曲線的標準方程________,并寫出該雙曲線的漸近線方程________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知二次函數(shù),.(1)若,求函數(shù)的最小值;(2)若,解關(guān)于x的不等式.18.(12分)如圖,四棱錐中,底面為矩形,底面,,點是棱的中點(1)求證:平面,并求直線與平面的距離;(2)若,求平面與平面所成夾角的余弦值19.(12分)解下列不等式:(1);(2).20.(12分)如圖,在四棱錐中,底面為的中點(1)求證:平面;(2)若,求平面與平面的夾角大小21.(12分)已知點在橢圓:上,橢圓E的離心率為.(1)求橢圓E的方程;(2)若不平行于坐標軸且不過原點O的直線l與橢圓E交于B,C兩點,判斷是否可能為等邊三角形,并說明理由.22.(10分)設(shè):實數(shù)滿足,:實數(shù)滿足(1)當(dāng)時,若與均為真命題,求實數(shù)的取值范圍;(2)當(dāng)時,若是的必要條件,求實數(shù)的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)等差數(shù)列的前n項和公式、等差數(shù)列的通項公式進行求解即可.【詳解】依題意得,八個子女所得棉花斤數(shù)依次構(gòu)成等差數(shù)列,設(shè)該等差數(shù)列為,公差為d,前n項和為,第一個孩子所得棉花斤數(shù)為,則由題意得,,解得,故選:A2、D【解析】設(shè),,,由向量關(guān)系化為坐標關(guān)系,再結(jié)合拋物線的焦半徑公式即可計算【詳解】由得焦點,準線方程為,設(shè),,由得則,化簡得所以故選:D3、D【解析】根據(jù)不等式性質(zhì)并結(jié)合反例,即可判斷命題真假.【詳解】對于選項A:若,則,由題意,,不妨令,,則此時,這與結(jié)論矛盾,故A錯誤;對于選項B:當(dāng)時,若,則,故B錯誤;對于選項C:由,不妨令,,則此時,故C錯誤;對于選項D:由不等式性質(zhì),可知D正確.故選:D.4、C【解析】利用函數(shù)單調(diào)性求解.【詳解】解:因為函數(shù)是單調(diào)遞增函數(shù),所以函數(shù)也是單調(diào)遞增函數(shù),所以.故選:C5、B【解析】結(jié)合導(dǎo)數(shù)和二次函數(shù)的性質(zhì)可求出和的值域,結(jié)合已知條件可得,,從而可求出實數(shù)a的取值范圍.【詳解】解:g(x)=x2ex的導(dǎo)函數(shù)為g′(x)=2xex+x2ex=x(x+2)ex,當(dāng)時,,由時,,時,,可得g(x)在[–1,0]上單調(diào)遞減,在(0,1]上單調(diào)遞增,故g(x)在[–1,1]上的最小值為g(0)=0,最大值為g(1)=e,所以對于任意的,.因為開口向下,對稱軸為軸,又,所以當(dāng)時,,當(dāng)時,,則函數(shù)在[,2]上的值域為[a–4,a],且函數(shù)f(x)在,圖象關(guān)于軸對稱,在(,2]上,函數(shù)單調(diào)遞減.由題意,得,,可得a–4≤0<e<,解得ea≤4故選:B【點睛】本題考查了利用導(dǎo)數(shù)求函數(shù)的最值,考查了二次函數(shù)的性質(zhì),屬于中檔題.本題的難點是這一條件的轉(zhuǎn)化.6、A【解析】在三棱柱中,,轉(zhuǎn)化為結(jié)合已知條件計算即可.【詳解】在三棱柱中,滿足,且,則,,D點是線段上靠近A的一個三等分點,則,由向量的減法運算得,.故選:A【點睛】關(guān)鍵點點睛:在三棱柱中,,由向量的減法運算得,再展開利用數(shù)量積運算.7、D【解析】根據(jù)向量的坐標運算和向量垂直數(shù)量積為0可解.【詳解】解:根據(jù)題意,易得a→∵與兩向量互相垂直,∴0+2+k+2=0,解得.故選:D8、B【解析】根據(jù)特稱命題的否定變換形式即可得出結(jié)果【詳解】命題:,,則命題的否定為,故選:B9、B【解析】首先根據(jù)題意設(shè)出拋物線的方程,利用點在曲線上的條件為點的坐標滿足曲線的方程,代入求得參數(shù)的值,最后得到答案.【詳解】解:根據(jù)題意設(shè)出拋物線的方程,因為點在拋物線上,所以有,解得,所以拋物線的方程是:,故選:B.10、C【解析】設(shè)直線的傾斜角為,則,解方程即可.【詳解】由已知,設(shè)直線的傾斜角為,則,又,所以.故選:C11、B【解析】由題意,,所以,即,故選B12、B【解析】由垂直關(guān)系得出直線l方程,聯(lián)立直線和拋物線方程,利用韋達定理以及數(shù)量積公式得出p的值.【詳解】,,即聯(lián)立直線和拋物線方程得設(shè),則解得故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求導(dǎo),得到,寫出切線方程.【詳解】因為,所以,則,所以曲線在點處的切線方程是,即,故答案為:14、【解析】設(shè)雙曲線的方程為,將點代入方程可求的值,從而可得結(jié)果【詳解】設(shè)與雙曲線有共同的漸近線的雙曲線的方程為,該雙曲線經(jīng)過點,所求的雙曲線方程為:,整理得故答案為【點睛】本題考查雙曲線的方程與簡單性質(zhì),意在考查靈活應(yīng)用所學(xué)知識解答問題的能力,屬于中檔題.與共漸近線的雙曲線方程可設(shè)為,只需根據(jù)已知條件求出即可.15、或【解析】根據(jù)平行線的性質(zhì)進行求解即可.【詳解】因為直線與平行,所以有:或,故答案為:或16、①.(答案不唯一)②.(答案不唯一)【解析】令雙曲線為,根據(jù)離心率可得,結(jié)合雙曲線參數(shù)關(guān)系寫出一個符合要求的雙曲線方程,進而寫出對應(yīng)的漸近線方程.【詳解】由題設(shè),可令雙曲線為且,∴,則,故為其中一個標準方程,此時漸近線方程為.故答案為:,(答案不唯一).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)當(dāng)時,不等式的解集為當(dāng)時,不等式的解集為當(dāng)時,不等式的解集為【解析】(1)帶入,將化解為,再利用基本不等式求最值即可;(2)將不等式移項整理為,再對a分類討論,比較兩根的大小,即可求得解集.【小問1詳解】當(dāng)a=3時,函數(shù)可整理為,因為,所以利用基本不等式,當(dāng)且僅當(dāng),即時,y取到最小值.所以,當(dāng)時,函數(shù)的最小值為.【小問2詳解】將不等式整理為,令,即,解得兩根為與1,因為,當(dāng)時,即時,此時的解集為;當(dāng)時,即時,此時的解集為;當(dāng)時,即時,此時的解集為.綜上所述,當(dāng)時,不等式的解集為;當(dāng)時,不等式的解集為;當(dāng)時,不等式的解集為.18、(1)證明見解析,直線與平面的距離為(2)【解析】(1)以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,設(shè),利用空間向量法可證得平面,以及求得直線與平面的距離;(2)利用空間向量法可求得平面與平面所成夾角的余弦值【小問1詳解】解:因為平面,四邊形為矩形,以點為坐標原點,、、所在直線分別為、、軸建立如下圖所示的空間直角坐標系,設(shè),則、、、、、,,,,,所以,,,所以,,,又因為,因此,平面.所以,平面的一個法向量為,,平面,平面,則平面,所以,直線到平面的距離為.【小問2詳解】解:若,則、,設(shè)平面的法向量為,,,則,取,可得,設(shè)平面的法向量為,,,則,取,可得,.因此,平面與平面所成夾角的余弦值為.19、(1)(2)【解析】(1)利用十字相乘解題即可(2)利用分子分母同號為正,異號為負思想,注意討論分母不為0【小問1詳解】由題,即,解得或,即;【小問2詳解】由題,解得或,即20、(1)證明見解析(2)【解析】(1)取中點,連結(jié),證得,利用線面平行的判定定理,即可求解;(2)以為原點,以方面為軸,以方向為軸,以方向為軸,建立坐標系,利用平面和平面的法向量的夾角公式,即可求解【小問1詳解】取中點,連結(jié),由,,則,又由平面,平面,所以平面.【小問2詳解】以為原點,以方面為軸,以方向為軸,以方向為軸,建立坐標系,可得,,,,,則,,設(shè)平面的一個法向量為,則,即,令,則又平面的法向量為;則,所以平面與平面所成的銳二面角為.21、(1)(2)三角形不可能是等邊三角形,理由見解析【解析】(1)根據(jù)點坐標和離心率可得橢圓方程;(2)假設(shè)為等邊三角形,設(shè),與橢圓方程聯(lián)立,由韋達定理得的中點的坐標,,利用得出矛盾.小問1詳解】由點在橢圓上,得,即,又,即,解得,所以橢圓的方程為.【小問2詳解】假設(shè)為等邊

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論