2026屆西安市航空六一八中學(xué)數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測模擬試題含解析_第1頁
2026屆西安市航空六一八中學(xué)數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測模擬試題含解析_第2頁
2026屆西安市航空六一八中學(xué)數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測模擬試題含解析_第3頁
2026屆西安市航空六一八中學(xué)數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測模擬試題含解析_第4頁
2026屆西安市航空六一八中學(xué)數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2026屆西安市航空六一八中學(xué)數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.《萊茵德紙草書》是世界上最古老的數(shù)學(xué)著作之一.書中有這樣一道題目:把個面包分給個人,使每個人所得成等差數(shù)列,且使較大的三份之和的是較小的兩份之和,則最小的一份為()A. B.C. D.2.執(zhí)行如圖所示的算法框圖,則輸出的結(jié)果是()A. B.C. D.3.已知橢圓+=1(a>b>0)的右焦點為F(3,0),過點F的直線交橢圓于A、B兩點.若AB的中點坐標為(1,-1),則E的方程為A.+=1 B.+=1C.+=1 D.+=14.“且”是“方程表示橢圓”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件5.從集合{2,3,4,5}中隨機抽取一個數(shù)m,從集合{1,3,5}中隨機抽取一個數(shù)n,則向量=(m,n)與向量=(1,-1)垂直的概率為()A. B.C. D.6.已知命題p:,總有,則為()A.,使得 B.,使得C.,總有 D.,總有7.設(shè)等比數(shù)列的前項和為,若,則的值是()A. B.C. D.48.已知命題,,則A., B.,C., D.,9.阿基米德(公元前287年~公元前212年)不僅是著名的物理學(xué)家,也是著名的數(shù)學(xué)家,他利用“逼近法”得到的橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積.若橢圓的對稱軸為坐標軸,焦點在軸上,且橢圓的離心率為,面積為,則橢圓的標準方程為()A. B.C. D.10.若曲線f(x)=x2的一條切線l與直線平行,則l的方程為()A.4x-y-4=0 B.x+4y-5=0C.x-4y+3=0 D.4x+y+4=011.若拋物線的焦點與橢圓的下焦點重合,則m的值為()A.4 B.2C. D.12.當(dāng)圓的圓心到直線的距離最大時,()A B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知為橢圓上的一點,,分別為圓和圓上的點,則的最小值為______14.若命題“,不等式恒成立”為真命題,則實數(shù)a的取值范圍是________.15.將連續(xù)的正整數(shù)填入n行n列的方陣中,使得每行、每列、每條對角線上的數(shù)之和相等,可得到n階幻方.記n階幻方每條對角線上的數(shù)之和為,如圖:,那么的值為___________.16.已知雙曲線-=1(a>0,b>0)與拋物線y2=8x有一個共同的焦點F,兩曲線的一個交點為P,若|FP|=5,則點F到雙曲線的漸近線的距離為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的離心率為,右焦點為F,且E上一點P到F的最大距離3(1)求橢圓E的方程;(2)若A,B為橢圓E上的兩點,線段AB過點F,且其垂直平分線交x軸于H點,,求18.(12分)2021年11月初某市出現(xiàn)新冠病毒感染者,該市教育局部署了“停課不停學(xué)”的行動,老師們立即開展了線上教學(xué).某中學(xué)為了解教學(xué)效果,于11月30日復(fù)課第一天安排了測試,數(shù)學(xué)教師為了調(diào)查高二年級學(xué)生這次測試的數(shù)學(xué)成績與每天在線學(xué)習(xí)數(shù)學(xué)的時長之間的相關(guān)關(guān)系,對在校高二學(xué)生隨機抽取45名進行調(diào)查,了解到其中有25人每天在線學(xué)習(xí)數(shù)學(xué)的時長不超過1小時,并得到如下的統(tǒng)計圖:(1)根據(jù)統(tǒng)計圖填寫下面列聯(lián)表,是否有95%的把握認為“高二學(xué)生的這次摸底考試數(shù)學(xué)成績與其每天在線學(xué)習(xí)數(shù)學(xué)的時長有關(guān)”;數(shù)學(xué)成績不超過120分數(shù)學(xué)成績超過120分總計每天在線學(xué)習(xí)數(shù)學(xué)的時長不超過1小時25每天在線學(xué)習(xí)數(shù)學(xué)的時長超過1小時總計45(2)從被抽查的,且這次數(shù)學(xué)成績超過120分的學(xué)生中,按分層抽樣的方法抽取5名,再從這5名同學(xué)中隨機抽取2名,求這兩名同學(xué)中至多有一名每天在線學(xué)習(xí)數(shù)學(xué)的時長超過1小時的概率附:,其中.參考數(shù)據(jù):0.1000.0500.0100.0012.7063.8416.63510.82819.(12分)已知內(nèi)角A,B,C的對邊分別為a,b,c,且B,A,C成等差數(shù)列.(1)求A的大??;(2)若,且的面積為,求的周長.20.(12分)已知橢圓的右頂點為,上頂點為.離心率為,.(1)求橢圓的標準方程;(2)若,是橢圓上異于長軸端點的兩點(斜率不為0),已知直線,且,垂足為,垂足為,若,且的面積是面積的5倍,求面積的最大值.21.(12分)如圖,在四棱錐中,底面為直角梯形,平面平面,,.(1)證明:平面;(2)已知,,,且直線與平面所成角的正弦值為,求平面與平面夾角的余弦值.22.(10分)在復(fù)數(shù)集C內(nèi)方程有六個根分別為(1)解出這六個根;(2)在復(fù)平面內(nèi),這六個根對應(yīng)的點分別為A,B,C,D,E,F(xiàn);求多邊形ABCDEF的面積

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】設(shè)5人分到的面包數(shù)量從小到大記為,設(shè)公差為,可得,,求出,根據(jù)等差數(shù)列的通項公式,得到關(guān)于關(guān)系式,即可求出結(jié)論.【詳解】設(shè)5人分到的面包數(shù)量從小到大記為,設(shè)公差為,依題意可得,,,,解得,.故選:A.【點睛】本題以數(shù)學(xué)文化為背景,考查等差數(shù)列的前項和、通項公式基本量的計算,等差數(shù)列的性質(zhì)應(yīng)用是解題的關(guān)鍵,屬于中檔題.2、B【解析】列舉出循環(huán)的每一步,利用裂項相消法可求得輸出結(jié)果.【詳解】第一次循環(huán),不成立,,;第二次循環(huán),不成立,,;第三次循環(huán),不成立,,;以此類推,最后一次循環(huán),不成立,,.成立,跳出循環(huán)體,輸出.故選:B.3、D【解析】設(shè)、,所以,運用點差法,所以直線的斜率為,設(shè)直線方程為,聯(lián)立直線與橢圓的方程,所以;又因為,解得.【考點定位】本題考查直線與圓錐曲線的關(guān)系,考查學(xué)生的化歸與轉(zhuǎn)化能力.4、B【解析】根據(jù)充分條件、必要條件的定義和橢圓的標椎方程,判斷可得出結(jié)論.【詳解】解:充分性:當(dāng),方程表示圓,充分性不成立;必要性:若方程表示橢圓,則,必有且,必要性成立,因此,“且”是“方程表示橢圓”的必要不充分條件.故選:B.5、A【解析】根據(jù)分步計數(shù)乘法原理求得所有的)共有12個,滿足兩個向量垂直的共有2個,利用古典概型公式可得結(jié)果.【詳解】集合{2,3,4,5}中隨機抽取一個數(shù),有4種方法;從集合{1,3,5}中隨機抽取一個數(shù),有3種方法,所以,所有的共有個,由向量與向量垂直,可得,即,故滿足向量與向量垂直的共有2個:,所以向量與向量垂直的概率為,故選A.【點睛】本題主要考查分步計數(shù)乘法原理的應(yīng)用、向量垂直的性質(zhì)以及古典概型概率公式的應(yīng)用,屬于中檔題.在解古典概型概率題時,首先求出樣本空間中基本事件的總數(shù),其次求出概率事件中含有多少個基本事件,然后根據(jù)公式求得概率.6、B【解析】由含有一個量詞的命題的否定的定義求解.【詳解】因為命題p:,總有是全稱量詞命題,所以其否定為存在量詞命題,即,使得,故選:B7、B【解析】根據(jù)題意,由等比數(shù)列的性質(zhì)可知成等比數(shù)列,從而可得,即可求出的結(jié)果.【詳解】解:已知等比數(shù)列的前項和為,,由等比數(shù)列的性質(zhì)得:成等比數(shù)列,且公比不為-1即成等比數(shù)列,,,.故選:B.8、A【解析】根據(jù)全稱命題與特稱命題互為否定的關(guān)系,即可求解,得到答案【詳解】由題意,根據(jù)全稱命題與特稱命題的關(guān)系,可得命題,,則,,故選A【點睛】本題主要考查了含有一個量詞的否定,其中解答中熟記全稱命題與特稱性命題的關(guān)系是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題9、C【解析】由題意,設(shè)出橢圓的標準方程為,然后根據(jù)橢圓的離心率以及橢圓面積列出關(guān)于的方程組,求解方程組即可得答案【詳解】由題意,設(shè)橢圓的方程為,由橢圓的離心率為,面積為,∴,解得,∴橢圓的方程為,故選:C.10、D【解析】設(shè)切點為,則切線的斜率為,然后根據(jù)條件可得的值,然后可得答案.【詳解】設(shè)切點為,因為,所以切線的斜率為因為曲線f(x)=x2的一條切線l與直線平行,所以,即所以l的方程為,即故選:D11、D【解析】求出橢圓的下焦點,即拋物線的焦點,即可得解.【詳解】解:橢圓的下焦點為,即為拋物線焦點,∴,∴.故選:D.12、C【解析】求出圓心坐標和直線過定點,當(dāng)圓心和定點的連線與直線垂直時滿足題意,再利用兩直線垂直,斜率乘積為-1求解即可.【詳解】解:因為圓的圓心為,半徑,又因為直線過定點A(-1,1),故當(dāng)與直線垂直時,圓心到直線的距離最大,此時有,即,解得.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、8【解析】根據(jù)橢圓的定義、點到圓上距離的最小值,即可得到答案;【詳解】設(shè)為橢圓的左右焦點,則,等號成立,當(dāng)共線,共線,的最小值為,故答案為:14、【解析】,不等式恒成立,只要即可,利用基本不等式求出即可得出答案.【詳解】解:因為,不等式恒成立,只要即可,因為,所以,則,當(dāng)且僅當(dāng),即時取等號,所以,所以.故答案為:.15、34【解析】根據(jù)每行數(shù)字之和相等,四行數(shù)字之和剛好等于1到16之和可得.【詳解】4階幻方中,4行數(shù)字之和,得.故答案為:3416、【解析】設(shè)點為,由拋物線定義知,,求出點P坐標代入雙曲線方程得到的關(guān)系式,求出雙曲線的漸近線方程,利用點到直線的距離公式求解即可.【詳解】由題意得F(2,0),因為點P在拋物線y2=8x上,|FP|=5,設(shè)點為,由拋物線定義知,,解得,不妨取P(3,2),代入雙曲線-=1,得-=1,又因為a2+b2=4,解得a=1,b=,因為雙曲線的漸近線方程為,所以雙曲線的漸近線為y=±x,由點到直線的距離公式可得,點F到雙曲線的漸近線的距離.故答案為:【點睛】本題考查雙曲線和拋物線方程及其幾何性質(zhì);考查運算求解能力和知識遷移能力;靈活運用雙曲線和拋物線的性質(zhì)是求解本題的關(guān)鍵;屬于中檔題、??碱}型.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)根據(jù)離心率和最大距離建立等式即可求解;(2)根據(jù)弦長,求出直線方程,解出點的坐標即可得解.【詳解】(1)橢圓的離心率為,右焦點為F,且E上一點P到F的最大距離3,所以,所以,所以橢圓E的方程;(2)A,B為橢圓E上的兩點,線段AB過點F,且其垂直平分線交x軸于H點,所以線段AB所在直線斜率一定存在,所以設(shè)該直線方程代入,整理得:,設(shè),,,整理得:,當(dāng)時,線段中點坐標,中垂線方程:,;當(dāng)時,線段中點坐標,中垂線方程:,,綜上所述:.18、(1)表格見解析,有(2)【解析】(1)根據(jù)統(tǒng)計圖計算填表即可;(2)根據(jù)古典概型計算公式計算即可.【小問1詳解】根據(jù)統(tǒng)計圖可得:每天在線學(xué)習(xí)數(shù)學(xué)的時長不超過1小時數(shù)學(xué)成績不超過120分的有人,每天在線學(xué)習(xí)數(shù)學(xué)的時長不超過1小時數(shù)學(xué)成績超過120分的有人,每天在線學(xué)習(xí)數(shù)學(xué)的時長超過1小時數(shù)學(xué)成績不超過120分的有人,每天在線學(xué)習(xí)數(shù)學(xué)的時長超過1小時數(shù)學(xué)成績超過120分的有人,可得列聯(lián)表如下:數(shù)學(xué)成績不超過120分數(shù)學(xué)成績超過120分總計每天在線學(xué)習(xí)數(shù)學(xué)的時長不超過1小時151025每天在線學(xué)習(xí)數(shù)學(xué)的時長超過1小時51520總計202545根據(jù)列聯(lián)表中的數(shù)據(jù),所以有95%的把握認為“高二學(xué)生的這次摸底考試數(shù)學(xué)成績與其每天在線學(xué)習(xí)數(shù)學(xué)的時長有關(guān)”【小問2詳解】由列聯(lián)表可得,被抽查學(xué)生中這次數(shù)學(xué)成績超過120分的有25人,其中每天在線學(xué)習(xí)數(shù)學(xué)的時長不超過1小時的有10人,每天在線學(xué)習(xí)數(shù)學(xué)的時長超過1小時的有15人,人數(shù)比為2∶3,按分層抽樣每天在線學(xué)習(xí)數(shù)學(xué)的時長不超過1小時的抽2人,記為:1,2;每天在線學(xué)習(xí)數(shù)學(xué)的時長超過1小時的抽3人,記為:a,b,c.所有可能結(jié)果如下:,共計10種.設(shè)事件A為“兩名同學(xué)中至多有一名每天在線學(xué)習(xí)數(shù)學(xué)時長超過一小時”包含這7種可能結(jié)果所以19、(1)(2)【解析】(1)由等差數(shù)列的性質(zhì)結(jié)合內(nèi)角和定理得出A的大?。唬?)先由余弦定理,結(jié)合,,得到的關(guān)系式,再由的面積為,得到的關(guān)系式,兩式聯(lián)立可求出,進而可確定結(jié)果.【小問1詳解】因為B,A,C成等差數(shù)列,所以,所以.【小問2詳解】因為,,由余弦定理可得:;又的面積為,所以,所以,所以,所以周長為.20、(1)(2)面積的最大值為【解析】(1)由離心率為,,得,解得,,,進而可得答案(2)設(shè)直線的方程為,,,,,聯(lián)立直線與橢圓的方程,結(jié)合韋達定理可得,,由弦長公式可得,點到直線的距離,則,,由的面積是面積的5倍,解得,再計算的最大值,即可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論