版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
AStrategicApproachforUtilityCompaniesLeveragingGeoAI:/me01IntroductionIntroductionThe
primaryobjectiveofutilitycompanies
istoeffectively
planandmanage
their
infrastructuretoensure
reliabledeliveryofessentialservices
likewater,electricity,natural
gasandtelecommunicationto
itscustomers.
Geospatial
data
accuratelymapsutilitiesonthesurface
ofthe
earth,
alongwith
its
technical
and
physical
parameters.
Therefore,
it
iscriticalforeffective
infrastructure
management,enablingprecise
supervisionofassetssuchas
powerlines,pipelines,
andtelecom
towerswithintheelectricity,water,gasandtelecommunication
sectors.
Ithelps
indecision
making
byassisting
intheoptimisation
ofnetworkconfigurations,
identifying
upgrading
needs
andacceleratingfaultdetectionand
maintenance
processes.GeospatialandAImarketgrowth:A
rapidtransformationTheacceleratingadoptionofgeospatialand
AItechnologieshighlights
theirexpanding
roleacrossindustries,particularly
i
n
utilitiesand
energy.Thisisthe
idealmomenttoembraceand
leverage
GeospatialArtificialIntelligence(GeoAI)which
is
an
integrationofGeospatial
dataandanalysiswith
AItechniquesandtechnologiesforextracting
meaningfulinsightsfromthedata.The
GeospatialAImarket
in
Middle
Eastand
NorthAfricarecordedavalueofUS$57.3mn
in
2023and
is
anticipated
toreach
approximately
$222.8mn
by2031,growing
at
a
CAGR
of
18.5%
during
the
forecast
period
2024-2031.6
Thisindicatesthetransformative
possibilityit
holdsfortheentire
region.Inthe
nextfewsectionswe
willfocusonunderstandingdifferentcomponentsofGeoAI
,differentuse
cases,
challenges
in
implementingGeoAIandfuturetrendsfortheregionalutilitiessector
inMiddle
East.Utilities
&energyAImarket:
From$15.45B(2024)to$75.53B(2034).Globalgeospatialmarket:Valuedat$560.18B
in2024,projectedtohit
$1Tby2028(CAGR15.9%).Keycontributor:Theutilitiessector(electricity,water,gas)
holds18%marketshare.MiddleEastgeospatialmarket:Expectedtogrowfrom$1.16B(2024)to$1.71B(2029)(CAGR
8.15%),drivenbysmartgrids,meters,andasset
management.GlobalAImarket:Estimatedat$196.63B(2023),setto
soarto$1.81Tby2030
(CAGR
36.6%).MiddleEastAI
market:Growingfrom$11.92B(2023)to$166.33B(2030),fueledbynationalAIstrategiesandsectoradoption.02Convergenceof
geospatial
analyticswithAIArtificial
IntelligenceProblemSolving&Search
StrategiesRoboticRepresentationPl
anningand
SchedulingSpeechVisual
PerceptionReinforcement
learningAutom
atic
Linear/LogisticNeuralNetworks
RegressionEnsemble
Adaptive
Resonance
K-MeansMethods
Theory(ART)
Network
(RNN)
ClusteringMultilayerAnomaly
Perceptro
ns
(M
LP)
Autoencoders
Radial
Basis
DecisionDetection
Functi
onNetworks
treesModulDeep
learningLong
Short
-TermGenerativeMemory
Networks
Adversarial
Networks(LSTM)
(GAN)TransformerModels(BERT,GPTetc)Recurrent
NeuralNetworks
(RNN)Deep
BeliefNetworks
(DBN)ArtificialIntelligenceMachineLearningDeepLearningGenerativeAIArtificial
Intelligence(AI)isthescienceandengineeringofmaking
intelligent
machinesthat
cansimulatehuman
learning,comprehension,problemsolving,decision
making,creativity
andautonomy.MachineLearning
(ML)isasubsetofAIwhich
involves
creating
models
by
training
an
algorithm
to
learn
patterns,make
predictions
ordecision
basedondatawithout
being
explicitly
programmed.
DeepLearning
isasubsetofmachinelearningthat
uses
multilayered
neural
networks,
that
is
inspired
by
how
thehuman
brainoperatestotakecomplexdecisions.
GenerativeAI(GenAI)
is
a
subset
of
DeepLearningwhichcan
produce
newcontentliketext,
imagery,
audio,andsyntheticdata
basedonthe
inputsfrom
humans
intheform
ofnatural
language
prompts.Geospatialanalytics
isthescienceofanalysinggeographicalandspatialdatato
identify
patterns,trends
andrelationshipsbetweendifferentassets,
peopleor
places.
Itintegrates
remote
sensing,
GeographicInformationSystem
(GIS),Global
PositionSystem
(GPS)
andbigdatatoanalyse
location-basedinformation
across
multiple
dimensions
toproduceoutputsintheform
ofmaps,
graphs,
statistics
and
cartograms.ConvergenceofgeospatialanalyticswithAI
Figure
1:GeospatialAnalytics
Figure2:Artificial
IntelligenceConvolutional
Neural
NetworksDeep
Reinforcement
LearningDeepAutoencodersSpatiotemporalAnalysisBig
GeospatialdataAnalysisNatural
Language
Processi
ng
(NLP
)I
nte
lligentSel
f
Organising
MapBolt
zmannMachinesSuitabilityAnalysisProximity
AnalysisNetworkAnalysisHotspotAnalysisClusterAnalysisVectorAnalysisar
Neural
NetworksHopfield
NetworksPrincipalComponentAnalysis(PCA)MachineLearning3D
AnalysisK-NearestNeighbours
(KNN)Supportvectormachines
(SVM
)AutomatedProgram
mingNaiveBayes
Classificat
ionExpertSystemsRandom
ForestRecurrentNeuralRecognitionReasoningKnowlageParameterGeospatial
AnalyticsArti?cial
Intelligence
(AI)Geospatial
Arti?cialIntelligence
(GeoAI)FocusUnderstanding
spatialrelationships,
patterns,and
trendsSolving
general
problems
using
intelligent
algorithms
andtechniques
across
domainsSolving
geospatial
problems
usingAI/ML
techniquesPrimary
datatypesSpatial
data
(vector,
raster)and
non-spatial
attributesAnytype
of
data:
text,
images,
video,
numerical,
categorical,
etcSpatial
andtemporal
data
with
AI-ready
formatsKey
techniquesSpatial
statistics,
geospatialmodelling,
cartographyMachine
learning,
deeplearning,
natural
languageprocessing,
computer
visionDeep
learning,
machinelearning,
computer
visionapplied
to
spatial
dataOutputsMaps,
spatial
models,
reports
and
dashboardsPredictions,classifications,
recommendations,decisionsupportsystemsPredictive
spatial
models,automated
feature
extraction,
intelligent
insightsAutomationLimited;
manual
intervention
is
neededFully
automated,dependingon
the
system's
design
andcomplexityHigh
automationthroughAI/MLmodels
and
neuralnetworksScalabilityModerate;
dependent
ongeospatial
data
tools
andprocessingHighly
scalable
using
cloudand
distributed
computing
environmentsHigh;leverages
AI-drivenscalability
with
cloud
anddistributed
computingComplexityRelatively
simpler;
focuses
on
spatial
data
analysiswork?owsVaries;
can
rangefrom
simple
algorithms
to
overly
complex
neural
networksMore
complexdue
tointegration
ofAI/ML
withgeospatial
dataUsage
exampleOptimising
power
line
routesAI
Chatbotfor
citizens
foroutage
reportingPredictive
maintenance
ofpower
lines
using
droneimageryGeoAI
isan
amalgamationofgeospatialdata,science,
andtechnologywith
AIto
extract
meaningful
insightsandsolve
spatial
problems.If
weconsiderAIasthedevelopmentofmachinesthat
canthink
and
reason
like
humans,
GeoAI
represents
anintersectionofAIandgeographyindevelopingadvancedsystems
that
make
use
of
geospatial
big
data
to
perform
spatial
reasoningandlocation-basedanalysis,
much
likehumans.
Figure3:GeospatialArtificial
Intelligence(GeoAI)Whileeachofthesetechnologieshasunique
strengths,
limitations
andapplications,
it
is
crucial
to
understand
how
theycanbeeffectively
leveragedtoaddress
businesschallenges
inthe
utilitysector.
The
table
below
provides
acomparativeoverviewofkey
parameters
andguidanceonselectingthe
appropriatetechnology.Arti?cialIntelligenceGeospatial
AnalyticsGeoAIGeospatial
analytics
gains
significantpower
whenenhancedby
AI-driven
capabilities,
such
asobject
detection
fromimagery,automation,scalabilityforlargedatasets,improvedaccuracy,fasterprocessingand
immersive
technology.GeoAIcombinespredictive,prescriptiveinsightswithgeospatialdatafrom
drones,
satellite
imageryand
helps
to
solve
theproblem
inspatialcontext.
Italso
helpstoautomategeospatial
analyticsto
make
themautonomous
andwork
with
minimum
humansupervision.
GeoAIbrings
thegeographiccontexttosolve
realworld
problems
using
multiple
AItechniquesobjectdetection,spatialoptimisation
,
natural
language
processing,integration
with
multiple
data
sources,etc.GeoAIapplicationsspanacross
sectorssuchas
urban
planning(smartcity
development),
utilities
(pipeline
monitoring),
agriculture(precisionfarming),transportation(traffic
management),environmentalconservation(climatechangemodelling),andpublichealth
(epidemictracking),enablingdata-driven
decision-making
andenhanced
operationalefficiency.However,thefocusofthis
paperwillbeapplications
ofGeoAIfor
utilitysector,
including
electricity,water,gas
andtelecommunication.ComponentsofGeoAIfortheutilitysector03Thetable
belowshows
howeachcomponentcan
be
supported
by
industry
standard
open
source
or
proprietary
tools/platforms.ComponentSupported
tools
and
platformsGeospatial
dataRaster
data
can
be
created
from
di?erent
types
of
sensors
like
Satellite,
Drone,
Aerial,
etc.
Vector
data
can
be
created
bydigitizing
raster
data
or
by
taking
measurements
of
earth’s
surface
or
assets
through
di?erent
surveying
techniques
like
total
station,
GPS
,
LiDAR,
etc.Geospatial
analyticsOpen-source
platforms:
QG
IS,
GRASS
GIS,
PostGIS
Geo
Server,
SAGA
GIS,
R
with
spatial
packagesProprietary
platform:
Esri
ArcGIS,
Hexagon
Geo
media,
ERDAS
IMAGINE,BentleyMaps,
etc.AI,
ML,
DeepLearning
algorithms,techniquesOpen-source
platforms:
TensorFlow,PyTorch
,
Apache
Spark
MLlib
,
Scikit-Learn.Proprietary
platform:
Vertex
AI,
AWS
Sage
Maker
,
Azure
AI,
IBM
Watson
,
OpenAI
GPT
(ChatGPT),
NVIDIA
Jetson,
etc.Data
Processingand
StorageOpen-source
platforms:OpenStack,CloudStack,
Eucalyptus,Open
Horizon,Edge
X
Foundry,
etc.Proprietary
platform:
Amazon
Web
Services
(AWS),
Microsoft
Azure,
Cloud
Platform
(GCP),IBM
Cloud,
Oracle
Cloud,
NVIDIA
Jetson,MicrosoftPercept,
etc.Visualisation
toolsOpen-source
platforms:
QG
IS,
GRASS
GIS,
PostGIS
Geo
Server,
SAGA
GIS,
R
with
spatial
packages,
Cesium,
Unity,
Earth,
etc.Proprietary
platform:
Esri
ArcGIS,
Hexagon
Geo
media,
ERDAS
IMAGINE,
Bentley
Maps,
PowerBI,
Tableau,Microsoft
HoloLens,etc.Data
integration
andinteroperabilitystandardsDataIntegrations
is
supportedby
the
above
Enterprise
applicationsin
Open-source
and
Proprietary
platforms.Interoperability
standards
are
followed
by
most
of
the
industry
standards
platforms
include
International
Organization
for
Standardization
(ISO),
World
Wide
Web
Consortium
(W3C)
and
Open
Geo
spatial
Consortium
(OGC)
standardsEthical
andregulatoryframeworksInternational
regulations
which
dealsGlobal
Ethical
andRegulatoryFrameworksinclude
Organisation
for
EconomicCo-operation
andDevelopment
(OECD)
AIPrinciples,UNESCO
AIEthics
RecommendationDataprotection
andPrivacy
laws:General
DataProtection
Regulation(GDPR),
Personal
DataProtection
Law(PDPL)Cyber
laws:National
Institute
of
Standards
and
Technology
(NIST)
CybersecurityFramework,
KSAEssential
Cybersecurity
Controls
(ECC)ComponentsofGeoAIforthe
utilitysectorThe
recipefordeveloping,implementinganeffectiveandrobust
GeoAIsolution
for
utilitysectorshould
includeall
the
keyingredients
likegeospatialdata,geospatialanalytics,AI,
MLalgorithms,data
processing,storage,
visualisationtools,data
integration,interoperabilitystandards
andethical
regulatoryframeworks.
Figure4:
ComponentsofGeoAIforthe
utilitysectorVisualisationtoolsMaps,
charts,
graphs,infographics,
3D
models,
digitaltwin,AR/VR
modelsComponentsof
GeoAI
forGeospatial
AnalyticsNetworkanalysis,
outageanalysis,
upstream
trace,downstreamtrace,
serviceareaanalysis,
leakdetectionGeospatial
dataVector
data:Water
pipelines,
electriccables,
valves
raster
data:
droneimagesoftransmissiontowerAI,
ML
algorithmsAutoencoders
for
anomaly
detectionRandom
Forest
algorithmsforanalyzing
historical
dataDataprocessing
&storageCloudcomputing,
big
dataandedge
computingcapabilitiesEthical
&
regulatoryframeworksUNESCOAIethics
recommendation,PDPL,
KSA
essential
cybersecuritycontrolsDataIntegration
&interoperabilitystandardsISO,W3C,
OGC
standardsutility
sectorGeoAIusecasesin
utilitysector04GeoAIusecases
inthe
utilitysectorThe
proliferationofGeoAIin
MiddleEastforthe
utilitysectorhas
been
primarily
driven
by
region’s
urgentrequirementsforsustainabledevelopment,efficientresource
managementandtechnological
modernisation.GeoAIis
increasinglyrecognised
as
keyenablerinaddressingcriticalchallengesacross
utility
sectors
while
aligning
withregionalaspirationsforsustainableeconomies
andsmartcities.Followingaresomeoftheapplications
ofGeoAIinthe
utilitysector:Inthefirststepthedrone
capturesthousandsofimagesofthe
powerlines.
Drones
can
reachand
cover
areas
of
transmission
lineswhicharenotaccessibleby
roadwaysforthemaintenanceteam.Inthesecondstep,thousands
ofgeotagged
imagesarestored
inthegeospatial
databasewith
locationalinformation.The
user
canclick
onanylocation
onthe
map
andviewthe
images
ofthe
power
lines
at
that
location.This
helpstoovercomethechallengeofmanuallyviewing
all
images
andaccurately
identify
broken
insulators.Inthe
third
step,
deep
learning
algorithmswhich
are
trained
on
images
of
broken
insulators,flashed
insulators
and
similar
scenarios
can
detect
the
anomaly
from
thousands
of
images
in
few
minutes,
thus
saving
huge
time,
efforts
andcostwhile
beingaccurate.Inthefourth
step,deeplearningalgorithmshighlightbroken
insulatorswith
different
colours
by
plotting
them
on
mapfor
easy
identification.The
usercanclick
onthemap
andverifythe
image
ofthe
broken
insulators.Inthefinal
step,the
map
locationswith
photosaresenttothe
maintenancefieldcrew
on
their
mobile
phones.
Thisnot
onlyenablesthemtoaccuratelyreachthelocationofrepair
butalsoensures
that
they
carry
appropriatetools
andreplacementdevicesforcomplete
thejob.Thisworkflow
helpsthepowerutilitiesteamtoaccuratelyidentify
exact
locationsofthe
broken
insulators
for
focusedmaintenancewhichsavestime,effort
andcosts.Followingaresomeofthesuccessstories
demonstratinghowdifferent
utility
companies
have
implemented
GeoAI.Oneofthemajorgasnetworkoperators
in
Europe
usedacombination
ofoptical
and
radar
satellite
imageryformonitoringover
160kmofhigh-pressuregaspipeline,whichisrouted
through
forests,fields
aswell
as
through
built-
upareas.VariousGeoAItoolswere
employedfortimeseriesanalysis,change
detection
andotherspatial
analyses,
revealinggrounddeformations
inpipelineareas.These
deformationswere
classified
intocategories
rangingfromgreaterthan2cm/yeartoless
than
10
cm/year.Vegetationexposuretopipelineswere
classifiedfrom
3mtolessthan
<10m
basedon
the
proximity
ofthevegetation
to
thepipelines.The
useofGeoAItoolssavedthem
operation
maintenance
cost,
time
and
provided
them
insights
on
their
pipelinewhichweresuspectabletorisk
bygrounddeformationandvegetationintimely
manner.Theywereabletotake
correctiveactionson
identifiedfocusedareas.7Casestudy:
Detecting
brokeninsulatorsonpower
linesusing
GeoAIElectrictransmissionanddistributioncompanies
manage
powerlinesthat
usuallyspanacross
largeareas,
usually
thousandsofkilometers.Itisoften
a
daunting
taskforthe
maintenance
team
to
identify
manually
broken
insulators
byvisual
inspection.Withtheuseofdronesthatcapture
images
of
the
power
lines,
the
laborious
taskofvisualinspection
iscompleted.Thefigurebelowshowsaworkflow
of
using
GeoAItools
to
automatethe
process
of
identifying
locationsofthebroken
insulatorwithevidence.Outputon
MapThe
output
of
theDeepLearningAlgorithmisplotted
onMap.Clicking
onmap
shows
thebroken
insulatorsFocusedMaintenanceThe
broken
insulator
photo
&
geospatiallocation
is
sent
tomaintenance
teamon
mobileGeotaggedimagesGeotaggedimages
of
the
transmissionlines
are
stored
inGeo
spatialdatabaseDroneCaptureDrone
capturesthousands
ofimages
of
Powerlines
whichcovershundredsof
kmsAsset
repaircompleteThe
Broken
Insulatoris
fixed
saving
time,
efforts
&
costDeepLearningDeepLearningmodel
is
used
todetect
brokeninsulatorsA
leadingtelecommunication
in
MiddleEastfacedchallengesinoptimising
their
network
performancewhich
includedidentifyingweaksignalzones,
managingnetworktrafficduring
peakevents
likeconcerts
orsports
matches,
planning
efficient5Gdeploymentacross
diverse
urban
andrurallandscapes.The
company
implementeddifferent
GeoAI
use
caseslikeCallroutingoptimisationwhichdeployed
ML
algorithmstodirectcallsthrough
the
least
congested
routes,
ensuring
uninterruptedcommunication.
Realtimespatial
analyticswere
usedduring
sports
events,
musicconcerts
to
monitoruserdensityandadjustnetwork
resourcesin
real
timeto
maintain
optimal
performance.BydeployingdifferentGeoAItoolsthecompanysaw
a25%
reduction
indeployment
costs
through
better
network
planning.Theyalsoobserveda20%increase
inmobile
internet
speedswhich
resulted
in
improving
services
and
resultedinusersatisfaction.The
company
alsoobservedfaster
response
times
tooutages
and
disruptions,
reducing
servicedowntime.8ChallengesinGeoAIImplementationforutilities05ChallengesinGeoAIimplementationfor
utilitiesImplementingGeoAIsolutionforutilityprovidersoffersthe
possibility
of
increasing
efficiency,
availing
resourcesappropriately,andimprovingthe
levelofintelligence
inthe
use
ofavailable
geo-spatial
data.
However,the
approachfor
achievingthesegoals
isfraughtwithdifferentchallenges.These
includecontrolling
large
anddispersed
datasets,assimilatingGeoAIsolutionswithexistingonesandhighinitial
implementationcosts.
More
so,
utilities
aredealingwith
internal
conflicts,shortageofAIskills
andisexposedtoheavyregulations.
Othergrey
areas,
namely
AI
model
biasand
invasionofprivacy
alsoaddcomplications.
Meetingthesechallengeswillrequire
defining
clear
strategiesthat
allowfor
phasedimplementationofthechanges,clearcommunicationof
the
changes,
ease
of
expansion
as
well
ascollaborationbetweenthetechnology
providersandtheusers.01
Datachallenges?
Qualityand
accuracy:
Manyutilityproviders
lackup-to-datedata;completeness
ofthe
data
is
also
an
issue
alongwithfragmenteddata.?
Integration:Consolidatingdatafrom
disparatesourceslikeIoT,
geospatial
systems,Asset
management,
CRM,
ERP
andotherlegacysystems
isachallenge
duetoabsenceofstandardised
data
models.?Volumemanagement:Thevolume
of
data
from
remote
sensing
sources
likedrones,
satellites,field
survey,
IOT
isgrowingcontinuouslyandprocessingandmanagingthe
data
effectively
is
challenging.02Technologyandinfrastructure?
Legacysystem:
Itisdifficulttointegratewith
legacysystemsdueto
lack
of
interoperability.?
Initialinvestments:
ImplementationofGeoAIsystem
my
require
initial
investmentsortechnology
refresh
whichcanaddadditional
coststo
existing
IT
budget.?
Scalability:The
utilitygridsexpand
itisessentialto
maintainthe
scalability
of
GeoAI
solutions
andassociated
techstack.03Organisational
barrier?
Resistanceto
change:
Employees
may
resistAIadoptionduetounfamiliarity
ofthetechnology
andfearof
job
replacement.?
Lackofexpertise:The
utilitycompanies
may
nothave
expertsin
Geospatial
andAItechnology
in
house,
whichmakesthey
relyon
external
vendors.?Workflowdisruptions:
Mundanetaskswhichcan
be
automated
using
AI
may
temporarily
disrupts
the
existingworkflowcreatingconfusionamongthestaff.04Regulatoryandsecurityconcerns?
Data
privacy:
Itisnecessarytobecautiousabout
privacy
concerns
when
collecting
consumer
data
and
using
it
foranalytical
purposes.?
Cybersecurityrisk:
SinceGeoAIsystemareintegratedtocritical
utility
infrastructure
they
may
be
vulnerable
tocyberattacksandhencerequiredeffectivesecurity
measures.?
Regulatorycompliance:
Itisimportanttoensurethat
GeoAIsystems
meetthelocal
and
international
standards,whichmayvary
insome
parts
ofthe
world.05Interpretabilityof
AI
models?
Complexity:Advanced
GeoAImodelsareusuallybasedondeep
learning
andsometimes
it
is
difficultto
explaintheirdecisionsmakingthem
act
like“black
box”
.?Accountability:Lack
ofinterpretability
can
leadto
operational
risks
and
reduced
trust
among
stakeholders,especiallyinsafety-criticalapplications.
Henceitis
importantto
use
Employing
Explainable
AI
(XAI)
and
using
interpretable
models,when
possible,toaddresstheseconcerns.06Ethical
Implications?
Bias:Thetrainingsetsused
inAImay
contain
different
types
of
biases
likegeographical,
selection,
coverage,
reporting,algorithmic,
etc.Itisimportanttoconsiderlocalisation
aspects
andother
relevant
aspects
fortargeted
implementationwhenconsidering
trainingdatasets?Job
replacement:Automationofsurvey,field
inspections
may
result
inworkforce
reduction
which
is
likely
to
raise
concernsamongtheworkforces.?
Fairness:
Itisimportanttodistributethe
benefitsderivedfromAIderived
insights
e.g.
uninterrupted
power
supplyinruralandurban
areas
remains
a
challenge.Empoweringutilities
through
GeoAI06Problemdefinitionandstrategicalignment1.IdentifycorechallengesIdentifycore
businesschallenges.Classifythem
intodifferentcategoriesofplanning,operations,maintenance,
regulatory.2.
Alignwithbusiness
goalsAlignGeoAIinitiativeswithorganisationstrategicgoalsandobjectives.AlignGeoAIinitiativeswithdifferentstakeholders
inthevalue
chain.3.Maturity
levelassessmentCurrentstateassessmentinfouraspects:people,
process,
data
andtechnology.Benchmarkingyourmaturityagainstpeers.Identifygapsandareasforimprovementtoalignwith
best
practices.Outlinestepsforadvancingtothe
nextmaturitystage.Emp
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 西寧市城東區(qū)招聘編外人員備考題庫完整參考答案詳解
- 河南省科學院碳基復合材料研究院科研輔助人員招聘備考題庫帶答案詳解
- 分離方法和技術
- 吉安市新廬陵大數(shù)據(jù)有限公司2026年面向社會招聘派遣員工的備考題庫及一套答案詳解
- 電大法本-2026年國際公法期末考試題庫和答案(精準版)
- 分布式儲能技術
- 2026年黑龍江省住院醫(yī)師規(guī)范化培訓師資培訓班實踐技能培訓試題及答案
- 骨質疏松癥患者的康復訓練與指導
- 采藥專業(yè)知識培訓課件
- 消防安全應急知識培訓課件
- 醫(yī)院藥房醫(yī)療廢物處置方案
- 高血壓達標中心標準要點解讀及中心工作進展-課件
- 某經(jīng)濟技術開發(fā)區(qū)突發(fā)事件風險評估和應急資源調查報告
- 金屬眼鏡架拋光等工藝【省一等獎】
- 混凝土質量缺陷成因及預防措施1
- 《藥品經(jīng)營質量管理規(guī)范》的五個附錄
- 試論如何提高小學音樂課堂合唱教學的有效性(論文)
- 機房設備操作規(guī)程
- ASMEBPE介紹專題知識
- GB/T 15087-1994汽車牽引車與全掛車機械連接裝置強度試驗
- GB/T 10922-200655°非密封管螺紋量規(guī)
評論
0/150
提交評論