版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2026屆江西省南昌市第十五中學(xué)高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若,則的值為()A.或 B.或C.1 D.-12.已知雙曲線的實(shí)軸長為10,則該雙曲線的漸近線的斜率為()A. B.C. D.3.已知為坐標(biāo)原點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)滿足,則的最小值為()A B.C. D.44.如圖,在四棱錐中,平面,底面是正方形,,則下列數(shù)量積最大的是()A. B.C. D.5.若關(guān)于x的不等式的解集為,則關(guān)于x的不等式的解集是()A. B.,或C.,或 D.,或,或6.已知為偶函數(shù),且,則___________.7.焦點(diǎn)為的拋物線標(biāo)準(zhǔn)方程是()A. B.C. D.8.已知傾斜角為的直線與雙曲線,相交于,兩點(diǎn),是弦的中點(diǎn),則雙曲線的漸近線的斜率是()A. B.C. D.9.已知等比數(shù)列的前項(xiàng)和為,則關(guān)于的方程的解的個數(shù)為()A.0 B.1C.無數(shù)個 D.0或無數(shù)個10.已知函數(shù),的導(dǎo)函數(shù),的圖象如圖所示,則的極值情況為()A.2個極大值,1個極小值 B.1個極大值,1個極小值C.1個極大值,2個極小值 D.1個極大值,無極小值11.若的解集是,則等于()A.-14 B.-6C.6 D.1412.過雙曲線的右焦點(diǎn)有一條弦是左焦點(diǎn),那么的周長為()A.28 B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)函數(shù),則___________.14.若一個球表面積為,則該球的半徑為____________15.雙曲線的漸近線方程是____________16.將一枚質(zhì)地均勻的骰子,先后拋擲次,則出現(xiàn)向上的點(diǎn)數(shù)之和為的概率是________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線:()的焦點(diǎn)為,點(diǎn)在上,點(diǎn)在的內(nèi)側(cè),且的最小值為(1)求的方程;(2)過點(diǎn)的直線與拋物線交于不同的兩點(diǎn),,直線,(為坐標(biāo)原點(diǎn))分別交直線于點(diǎn),記直線,,的斜率分別為,,,若,求的值18.(12分)在棱長為的正方體中,、分別為線段、的中點(diǎn).(1)求平面與平面所成銳二面角的余弦值;(2)求直線到平面的距離.19.(12分)已知數(shù)列滿足(1)求;(2)若,且數(shù)列的前n項(xiàng)和為,求證:20.(12分)如圖,已知三棱柱的側(cè)棱與底面垂直,,,和分別是和的中點(diǎn),點(diǎn)在直線上,且.(1)證明:無論取何值,總有;(2)是否存在點(diǎn),使得平面與平面所成角為?若存在,試確定點(diǎn)的位置;若不存在,請說明理由.21.(12分)已知直線:,直線:.(1)若,求與的距離;(2)若,求與的交點(diǎn)的坐標(biāo).22.(10分)如圖,在棱長為2的正方體中,E,F(xiàn)分別為AB,BC上的動點(diǎn),且.(1)求證:;(2)當(dāng)時,求點(diǎn)A到平面的距離.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】求出函數(shù)的導(dǎo)數(shù),由方程求解即可.【詳解】,,解得或,故選:B2、B【解析】利用雙曲線的實(shí)軸長為,求出,即可求出該雙曲線的漸近線的斜率.【詳解】由題意,,所以,,所以雙曲線的漸近線的斜率為.故選:B.【點(diǎn)睛】本題考查雙曲線的方程與性質(zhì),考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.3、B【解析】由數(shù)量積的坐標(biāo)運(yùn)算求得,令,化為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案【詳解】解:根據(jù)題意可得,、,所以,令,由約束條件作出可行域如下圖所示,由得,即,由,得,由圖可知,當(dāng)直線過時,直線在軸上的截距最小,有最小值為,即,所以故選:B4、B【解析】設(shè),根據(jù)線面垂直的性質(zhì)得,,,,根據(jù)向量數(shù)量積的定義逐一計(jì)算,比較可得答案.【詳解】解:設(shè),因?yàn)槠矫?,所以,,,,又底面是正方形,所以,,對于A,;對于B,;對于C,;對于D,,所以數(shù)量積最大的是,故選:B.5、D【解析】先利用已知一元二次不等式的解集求得參數(shù),再代入所求不等式,利用分式大于零,則分子分母同號,列不等式計(jì)算即得結(jié)果.【詳解】不等式解集為,即的二根是1和2,利用根和系數(shù)的關(guān)系可知,故不等式即轉(zhuǎn)化成,即,等價于或者,解得或,或者.故解集為,或,或.故選:D.【點(diǎn)睛】分式不等式的解法:(1)先化簡成右邊為零的形式(或),等價于一元二次不等式(或)再求解即可;(2)先化簡成右邊為零的形式(或),再利用分子分母同號(或者異號),列不等式組求解即可.6、8【解析】由已知條件中的偶函數(shù)即可計(jì)算出結(jié)果,【詳解】為偶函數(shù),且,.故答案為:87、D【解析】設(shè)拋物線的方程為,根據(jù)題意,得到,即可求解.【詳解】由題意,設(shè)拋物線的方程為,因?yàn)閽佄锞€的焦點(diǎn)為,可得,解得,所以拋物線的方程為.故選:D.8、A【解析】依據(jù)點(diǎn)差法即可求得的關(guān)系,進(jìn)而即可得到雙曲線的漸近線的斜率.【詳解】設(shè),則由,可得則,即,則則雙曲線的漸近線的斜率為故選:A9、D【解析】利用等比數(shù)列的求和公式討論公比的取值即得.【詳解】設(shè)等比數(shù)列的公比為,當(dāng)時,,因?yàn)?,所以無解,即方程的解的個數(shù)為0,當(dāng)時,,所以時,方程有無數(shù)個偶數(shù)解,當(dāng)時,方程無解,綜上,關(guān)于的方程的解的個數(shù)為0或無數(shù)個.故選:D.10、B【解析】根據(jù)圖象判斷的正負(fù),再根據(jù)極值的定義分析判斷即可【詳解】由,得,令,由圖可知的三個根即為與的交點(diǎn)的橫坐標(biāo),當(dāng)時,,當(dāng)時,,即,所以為的極大值點(diǎn),為的極大值,當(dāng)時,,即,所以為的極小值點(diǎn),為的極小值,故選:B11、A【解析】由一元二次不等式的解集,結(jié)合根與系數(shù)關(guān)系求參數(shù)a、b,即可得.【詳解】∵的解集為,∴-5和2為方程的兩根,∴有,解得,∴.故選:A.12、C【解析】根據(jù)雙曲線方程得,,由雙曲線的定義,證出,結(jié)合即可算出△的周長【詳解】雙曲線方程為,,根據(jù)雙曲線的定義,得,,,,相加可得,,,因此△的周長,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由的導(dǎo)數(shù)為,將代入,即可求出結(jié)果.【詳解】因?yàn)?,所以,所?故答案為:.14、【解析】設(shè)球的半徑為,代入球的表面積公式得答案【詳解】解:設(shè)球的半徑為,則,得,即或(舍去)故答案為:15、【解析】由雙曲線的方程可知,,即可直接寫出其漸近線的方程.【詳解】由雙曲線的方程為,可知,;則雙曲線的漸近線方程為.故答案:.16、【解析】將向上的點(diǎn)數(shù)記作,先計(jì)算出所有的基本事件數(shù),并列舉出事件“出現(xiàn)向上的點(diǎn)數(shù)之和為”所包含的基本事件,然后利用古典概型的概率公式可計(jì)算出所求事件的概率.【詳解】將骰子先后拋擲次,出現(xiàn)向上的點(diǎn)數(shù)記作,則基本事件數(shù)為,向上的點(diǎn)數(shù)之和為這一事件記為,則事件所包含的基本事件有:、、,共個基本事件,因此,.故答案為:.【點(diǎn)睛】本題考查利用古典概型的概率公式計(jì)算概率,解題時一般要列舉出相應(yīng)的基本事件,遵循不重不漏的基本原則,考查計(jì)算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)先求出拋物線的準(zhǔn)線,作于由拋物線的定義,可得,從而當(dāng)且僅當(dāng),,三點(diǎn)共線時取得最小,得出答案.(2)設(shè),,設(shè):與拋物線方程聯(lián)立,得出韋達(dá)定理,設(shè)出直線的方程分別與直線的方程聯(lián)立得出點(diǎn)的坐標(biāo),進(jìn)一步得到,的表達(dá)式,由條件可得答案.【小問1詳解】的準(zhǔn)線為:,作于,則,所以,因?yàn)辄c(diǎn)在的內(nèi)側(cè),所以當(dāng)且僅當(dāng),,三點(diǎn)共線時取得最小值,所以,解得,所以的方程為【小問2詳解】由題意可知的斜率一定存在,且不為0,設(shè):(),聯(lián)立消去得,由,即,得,結(jié)合,知記,,則直線的方程為由得易知,所以同理可得由,可得,即,化簡得,結(jié)合,解得18、(1);(2).【解析】(1)以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,利用空間向量法可求得平面與平面所成銳二面角的余弦值;(2)證明出平面,利用空間向量法可求得直線到平面的距離.【小問1詳解】解:以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,則、、、、,設(shè)平面的法向量為,,,由,取,可得,易知平面的一個法向量為,,因此,平面與平面所成銳二面角的余弦值為.【小問2詳解】解:,則,所以,,因?yàn)槠矫?,所以,平面,,所以,直線到平面的距離為.19、(1)(2)證明見解析【解析】(1)先求得,猜想,然后利用數(shù)學(xué)歸納法進(jìn)行證明.(2)利用放縮法證得結(jié)論成立.【小問1詳解】依題意,,,,猜想,下面用數(shù)學(xué)歸納法進(jìn)行證明:當(dāng)時,結(jié)論成立,假設(shè)當(dāng)時結(jié)論成立,即,由,,所以當(dāng)時,有,結(jié)論成立,所以當(dāng)時,.【小問2詳解】由(1)得,且為單調(diào)遞增數(shù)列,所以.所以.20、(1)證明見解析;(2)不存在,理由見解析.【解析】(1)以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,計(jì)算得出,即可得出結(jié)論;(2)計(jì)算出平面的一個法向量,利用空間向量法可得出關(guān)于的方程,即可得出結(jié)論.【詳解】(1)因?yàn)槠矫?,,以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立如下圖所示的空間直角坐標(biāo)系,則、、、,,,所以,,則,因此,無論取何值,總有;(2),設(shè)平面的法向量為,則,取,則,,所以,平面的一個法向量為,易知平面的一個法向量為,由題意可得,整理可得,,此方程無解,因此,不存在點(diǎn),使得平面與平面所成的角為.21、(1).(2).【解析】分析:(1)先根據(jù)求出k的值,再利用平行線間的距離公式求與的距離.(2)先根據(jù)求出k的值,再解方程組得與的交點(diǎn)的坐標(biāo).詳解:(1)若,則由,即,解得或.當(dāng)時,直線:,直線:,兩直線重合,不符合,故舍去;當(dāng)時,直線:,直線:,所以.(2)若,則由,得.所以兩直線方程為:,:,聯(lián)立方程組,解得,所以與的交點(diǎn)的坐標(biāo)為.點(diǎn)睛:(1)本題主要考查直線的位置關(guān)系和距離的計(jì)算,意在考查學(xué)生對這些知識的掌握水平和計(jì)算能力.(2)直線與直線平行,則且兩直線不重合.直線與直線垂
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年湖南分類考試政治考試題(附答案)
- 郵政速遞考試題庫及答案
- UI設(shè)計(jì)師招聘面試題及答案
- 2026自媒體秋招面試題及答案
- 車輛技能鑒定試題及答案
- 未來五年坡地拖拉機(jī)企業(yè)ESG實(shí)踐與創(chuàng)新戰(zhàn)略分析研究報告
- 中國金融電子化集團(tuán)有限公司2026校園招聘6人備考題庫附答案
- 北京市大興區(qū)瀛海鎮(zhèn)社區(qū)衛(wèi)生服務(wù)中心面向社會招聘臨時輔助用工人員考試參考題庫必考題
- 南充市司法局2025年下半年公開遴選公務(wù)員(參公人員)公 告(2人)考試備考題庫附答案
- 四川光明能源發(fā)展集團(tuán)有限公司關(guān)于公開招聘見習(xí)生的備考題庫必考題
- 2026年遼寧經(jīng)濟(jì)職業(yè)技術(shù)學(xué)院單招職業(yè)傾向性考試題庫及參考答案詳解1套
- 2025年及未來5年市場數(shù)據(jù)中國軟包裝用復(fù)合膠行業(yè)市場調(diào)研分析及投資戰(zhàn)略咨詢報告
- 建筑施工公司成本管理制度(3篇)
- 2025年婦產(chǎn)科副高試題庫及答案
- 全國物業(yè)管理法律法規(guī)及案例解析
- 2025年度黨委黨建工作總結(jié)
- 抖音來客本地生活服務(wù)酒旅酒店民宿旅游景區(qū)商家代運(yùn)營策劃方案
- 新質(zhì)生產(chǎn)力在體育產(chǎn)業(yè)高質(zhì)量發(fā)展中的路徑探索
- 2025年公民素質(zhì)養(yǎng)成知識考察試題及答案解析
- 北侖區(qū)打包箱房施工方案
- 老年人營養(yǎng)和飲食
評論
0/150
提交評論